某公司有甲,乙两个绿色农产品种植基地,在收获期这两个基地当天收获的某种农产品,一部分存入仓库,另一部分运往外地销售,根据经验,该农产品在收获过程中两个种植基地累积总产量y(吨)与收获天数x(天)满足函数关系y=2x+3(1≤x≤10且x为整数).该农产品在收获过程中甲,乙两基地累积产量分别占两基地累积总产量的百分比和甲,乙两基地累积存入仓库的量分别占甲,乙两基地的累积产量的百分比如下表:
项目 百分比 种植基地 | 该基地的累积产量占两基地累积总产量的百分比 | 该基地累积存入仓库的量占该基地的累积产量的百分比 |
甲 | 60% | 85% |
乙 | 40% | 22.5% |
(1)请用含y的代数式分别表示在收获过程中甲,乙两个基地累积存入仓库的量;
(2)设在收获过程中甲,乙两基地累积存入仓库的该种农产品的总量为p(吨),请求出p(吨)与收获天数x(天)的函数关系式;
(3)在(2)的基础上,若仓库内原有该种农产品42.6吨,为满足本地市场需求,在此收获期开始的同时,每天从仓库调出一部分该种农产品投入本地市场,若在本地市场售出该种农产品总量m(吨)与收获天x(天)满足函数关系m=-x
2+13.2x-1.6(1≤x≤10且x为整数).问在此收获期内连续销售几天,该农产品库存量达到最低值?最低库存量是多少吨?
考点分析:
相关试题推荐
(1)如图1,在正方形ABCD中,点E、F分别在边BC、CD上,AE、BF 交于点O,∠AOF=90°.求证:BE=CF.
(2)如图2,在正方形ABCD中,点E、H、F、G分别在边AB、BC、CD、DA上,
EF、GH交于点O,∠FOH=90°,EF=4.求GH的长.
(3)已知点E、H、F、G分别在矩形ABCD的边AB、BC、CD、DA上,EF、GH交于点O,∠FOH=90°,EF=4.直接写出下列两题的答案:
①如图3,矩形ABCD由2个全等的正方形组成,则GH=______;
②如图4,矩形ABCD由n个全等的正方形组成,则GH=______(用n的代数式表示).
查看答案
红星食品厂独家生产具有地方特色的某种食品,产量y
1(万千克)与销售价格x(元/千克)(2≤x≤10)满足函数关系式y
1=0.5x+11、经市场调查发现:该食品市场需求量y
2(万千克)与销售价格x(元/千克)(2≤x≤10)的关系如图所示.当产量小于或等于市场需求量时,食品将被全部售出;当产量大于市场需求量时,只能售出符合市场需求量的食品,剩余食品由于保质期短将被无条件销毁.
(1)求y
2与x的函数关系式;
(2)当销售价格为多少时,产量等于市场需求量?
(3)若该食品每千克的生产成本是2元,试求厂家所得利润W(万元)与销售价格x(元/千克)(2≤x≤10)之间的函数关系式.
查看答案
小聪和小明沿同一条路同时从学校出发到宁波天一阁查阅资料,学校与天一阁的路程是4千米,小聪骑自行车,小明步行,当小聪从原路回到学校时,小明刚好到达天一阁,图中折线O-A-B-C和线段OD分别表示两人离学校的路程s(千米)与所经过的时间t(分钟)之间的函数关系,请根据图象回答下列问题:
(1)小聪在天一阁查阅资料的时间为______分钟,小聪返回学校的速度为______千米/分钟;
(2)请你求出小明离开学校的路程s(千米)与所经过的时间t(分钟)之间的函数关系;
(3)当小聪与小明迎面相遇时,他们离学校的路程是多少千米?
查看答案
如图,△OAB中,OA=OB,∠A=30°,⊙O经过AB的中点E分别交OA、OB于C、D两点,连接CD.
(1)求证:AB是⊙O的切线.
(2)求证:CD∥AB.
(3)若CD=4
,求扇形OCED的面积.
查看答案
如图,在Rt△ABC中,∠C=90°,AC=15,BC=10,四边形CDEF是正方形,连接AF交DE于点G.求正方形CDEF的边长和EG的长.
查看答案