满分5 > 初中数学试题 >

如图:直角梯形ABCD中,AD∥CB,∠DCB=90°,AD<CB,E为CD上一...

如图:直角梯形ABCD中,AD∥CB,∠DCB=90°,AD<CB,E为CD上一点,∠ABE=45°,AE=10,BC=CD=12,则CE=   
manfen5.com 满分网
过B作DA的垂线交DA的延长线于M,M为垂足,延长DM到G,使MG=CE,连接BG.求证△BEC≌△BMG,△ABE≌△ABG,设CE=x,在直角△ADE中,根据AE2=AD2+DE2求x的值,可以求CE的长度. 【解析】 过B作DA的垂线交DA的延长线于M,M为垂足, 延长DM到G,使MG=CE,连接BG, ∴∠AMB=90°, ∵AD∥CB,∠DCB=90°, ∴∠D=90°, ∴∠AMB=∠DCB=∠D=90°, ∴四边形BCDM为矩形. ∵BC=CD, ∴四边形BCDM是正方形, ∴BC=BM,且∠ECB=∠GMB,MG=CE, ∴Rt△BEC≌Rt△BMG. ∴BG=BE,∠CBE=∠GBM, ∵∠CBE+∠EBA+∠ABM=90°,且∠ABE=45° ∴∠CBE+∠ABM=45° ∴∠ABM+∠GBM=45° ∴∠ABE=∠ABG=45°, ∴△ABE≌△ABG,AG=AE=10. 设CE=x,则AM=10-x, AD=12-(10-x)=2+x,DE=12-x, 在Rt△ADE中,AE2=AD2+DE2, ∴100=(x+2)2+(12-x)2, 即x2-10x+24=0; 解得:x1=4,x2=6. 故CE的长为4或6
复制答案
考点分析:
相关试题推荐
设sinα、cosα是方程manfen5.com 满分网的两根,△ABC的三边分别为manfen5.com 满分网,则△ABC的形状是    三角形. 查看答案
某商店有A种练习本出售,如买一本为0.30元,买一打(12本)为3.00元,买10打以上每打为2.70元,某年级有227人,每人需要一本,则最少需付    元. 查看答案
已知:0<a<1,-1<b<0,则a,ab,a-b,a+b这四个数中最大的数为     查看答案
在△ABC中,AC=CD且∠CAB-∠B=30°,则∠BAD=   
manfen5.com 满分网 查看答案
设a、b满足a2+b2-2a=0,则2a-b的最大值为    查看答案
试题属性

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.