满分5 > 初中数学试题 >

如图,已知抛物线C1:y=a(x+2)2-5的顶点为P,与x轴相交于A、B两点(...

如图,已知抛物线C1:y=a(x+2)2-5的顶点为P,与x轴相交于A、B两点(点A在点B的左边),点B的横坐标是1.
(1)求P点坐标及a的值;
(2)如图(1),抛物线C2与抛物线C1关于x轴对称,将抛物线C2向右平移,平移后的抛物线记为C3,C3的顶点为M,当点P、M关于点B成中心对称时,求C3的解析式;
(3)如图(2),点Q是x轴正半轴上一点,将抛物线C1绕点Q旋转180°后得到抛物线C4.抛物线C4的顶点为N,与x轴相交于E、F两点(点E在点F的左边),当以点P、N、F为顶点的三角形是直角三角形时,求点Q的坐标.
manfen5.com 满分网
(1)由抛物线C1:y=a(x+2)2-5得顶点P的为(-2,-5),把点B(1,0)代入抛物线解析式,解得,a=; (2)连接PM,作PH⊥x轴于H,作MG⊥x轴于G,根据点P、M关于点B成中心对称,证明△PBH≌△MBG,所以MG=PH=5,BG=BH=3,即顶点M的坐标为(4,5),根据抛物线C2由C1关于x轴对称得到,抛物线C3由C2平移得到,所以抛物线C3的表达式为y=(x-4)2+5; (3)根据抛物线C4由C1绕点x轴上的点Q旋转180°得点N的纵坐标为5,设点N坐标为(m,5),作PH⊥x轴于H,作NG⊥x轴于G,作PK⊥NG于K,可求得EF=AB=2BH=6,FG=3,点F坐标为(m+3,0),H坐标为(2,0),K坐标为(m,-5), 根据勾股定理得:PN2=NK2+PK2=m2+4m+104,PF2=PH2+HF2=m2+10m+50,NF2=52+32=34. 分三种情况讨论,利用勾股定理列方程求解即可.①当2∠PNF=90°时,PN2+NF2=PF2,解得m=,即Q点坐标为(,0); ②当∠PFN=90°时,PF2+NF2=PN2,解得m=, ∴Q点坐标为(,0), ③PN>NK=10>NF,所以∠NPF≠90° 综上所得,当Q点坐标为(,0)或(,0)时,以点P、N、F为顶点的三角形是直角三角形. 【解析】 (1)由抛物线C1:y=a(x+2)2-5得, 顶点P的坐标为(-2,-5),(2分) ∵点B(1,0)在抛物线C1上, ∴0=a(1+2)2-5, 解得,a=;(4分) (2)连接PM,作PH⊥x轴于H,作MG⊥x轴于G, ∵点P、M关于点B成中心对称, ∴PM过点B,且PB=MB, ∴△PBH≌△MBG, ∴MG=PH=5,BG=BH=3, ∴顶点M的坐标为(4,5),(6分) 抛物线C2由C1关于x轴对称得到,抛物线C3由C2平移得到, ∴抛物线C3的表达式为y=(x-4)2+5;(8分) (3)∵抛物线C4由C1绕点x轴上的点Q旋转180°得到, ∴顶点N、P关于点Q成中心对称, 由(2)得点N的纵坐标为5, 设点N坐标为(m,5),(9分) 作PH⊥x轴于H,作NG⊥x轴于G, 作PK⊥NG于K, ∵旋转中心Q在x轴上, ∴EF=AB=2BH=6, ∴FG=3,点F坐标为(m+3,0). H坐标为(-2,0),K坐标为(m,-5), ∵顶点P的坐标为(-2,-5), 根据勾股定理得: PN2=NK2+PK2=m2+4m+104, PF2=PH2+HF2=m2+10m+50, NF2=52+32=34,(10分) ①当∠PNF=90°时,PN2+NF2=PF2,解得m=, ∴Q点坐标为(,0). ②当∠PFN=90°时,PF2+NF2=PN2,解得m=, ∴Q点坐标为(,0). ③∵PN>NK=10>NF, ∴∠NPF≠90° 综上所得,当Q点坐标为(,0)或(,0)时,以点P、N、F为顶点的三角形是直角三角形.(13分)
复制答案
考点分析:
相关试题推荐
如图,在矩形ABCD中,AB=3,AD=1,点P在线段AB上运动,设AP=x,现将纸片折叠,使点D与点P重合,得折痕EF(点E、F为折痕与矩形边的交点),再将纸片还原.
(1)当点E与点A重合时,折痕EF的长为______

manfen5.com 满分网 查看答案
已知点A、B分别是x轴、y轴上的动点,点C、D是某个函数图象上的点,当四边形ABCD(A、B、C、D各点依次排列)为正方形时,称这个正方形为此函数图象的伴侣正方形.例如:如图,正方形ABCD是一次函数y=x+1图象的其中一个伴侣正方形.
(1)若某函数是一次函数y=x+1,求它的图象的所有伴侣正方形的边长;
(2)若某函数是反比例函数manfen5.com 满分网,它的图象的伴侣正方形为ABCD,点D(2,m)(m<2)在反比例函数图象上,求m的值及反比例函数解析式.
manfen5.com 满分网
查看答案
如图,在△ABC中,∠C=90°,BC=8,AC=6,另有一直角梯形DEFH(HF∥DE,∠HDE=90°)的底边DE落在CB上,腰DH落在CA上,且DE=4,∠DEF=∠CBA,AH:AC=2:3
(1)延长HF交AB于G,求△AHG的面积.
(2)操作:固定△ABC,将直角梯形DEFH以每秒1个单位的速度沿CB方向向右移动,直到点D与点B重合时停止,设运动的时间为t秒,运动后的直角梯形为DEFH′(如图).
探究1:在运动中,四边形CDH′H能否为正方形?若能,请求出此时t的值;若不能,请说明理由.
探究2:在运动过程中,△ABC与直角梯形DEFH′重叠部分的面积为y,求y与t的函数关系.manfen5.com 满分网
查看答案
若记函数y在x处的值为f(x),(例如y=x2,也可记着f(x)=x2)已知函数f(x)=ax2+bx+c的图象如图所示,且ax2+(b-1)x+c>0对所有的实数x都成立,则下列结论成立的有   
(1)ac>0,
(2)manfen5.com 满分网
(3)对所有的实数x都有f(x)>x,
(4)对所有的实数x都有f(f(x))>x.
manfen5.com 满分网 查看答案
水管的外部需要包扎,包扎时用带子缠绕在管道外部.若要使带子全部包住管道且不重叠(不考虑管道两端的情况),需计算带子的缠绕角度α(α指缠绕中将部分带子拉成图中所示的平面ABCD时的∠ABC,其中AB为管道侧面母线的一部分).若带子宽度为1,水管直径为2,则α的余弦值为   
manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.