满分5 > 初中数学试题 >

如下图,在矩形ABCD中,AB=12 cm,BC=6 cm.点P沿AB边从点A开...

如下图,在矩形ABCD中,AB=12 cm,BC=6 cm.点P沿AB边从点A开始向点B以2 cm/s的速度移动;点Q沿DA边从点D开始向点A以1 cm/s的速度移动.如果P、Q同时出发,用t(s)表示移动的时间(0≤t≤6)那么:
(1)当t为何值时,△QAP为等腰直角三角形?
(2)求四边形QAPC的面积,提出一个与计算结果有关的结论;
(3)当t为何值时,以点Q、A、P为顶点的三角形与△ABC相似?

manfen5.com 满分网
(1)根据题意分析可得:因为对于任何时刻t,AP=2t,DQ=t,QA=6-t.当QA=AP时,△QAP为等腰直角三角形,可得方程式,解可得答案; (2)根据(1)中.在△QAC中,QA=6-t,QA边上的高DC=12,由三角形的面积公式可得关系式,计算可得在P、Q两点移动的过程中,四边形QAPC的面积始终保持不变; (3)根据题意,在矩形ABCD中,可分为=、=两种情况来研究,列出关系式,代入数据可得答案. 【解析】 (1)对于任何时刻t,AP=2t,DQ=t,QA=6-t. 当QA=AP时,△QAP为等腰直角三角形,即:6-t=2t,解得:t=2(s), 所以,当t=2s时,△QAP为等腰直角三角形. (2)在△QAC中,QA=6-t,QA边上的高DC=12, ∴S△QAC=QA•DC=(6-t)•12=36-6t. 在△APC中,AP=2t,BC=6, ∴S△APC=AP•BC=•2t•6=6t. ∴S四边形QAPC=S△QAC+S△APC=(36-6t)+6t=36(cm2). 由计算结果发现: 在P、Q两点移动的过程中,四边形QAPC的面积始终保持不变.(也可提出:P、Q两点到对角线AC的距离之和保持不变) (3)根据题意,可分为两种情况来研究,在矩形ABCD中: ①当=时,△QAP∽△ABC,那么有: =,解得t==1.2(s), 即当t=1.2s时,△QAP∽△ABC; ②当=时,△PAQ∽△ABC,那么有: =,解得t=3(s), 即当t=3s时,△PAQ∽△ABC; 所以,当t=1.2s或3s时,以点Q、A、P为顶点的三角形与△ABC相似.
复制答案
考点分析:
相关试题推荐
一名篮球运动员传球,球沿抛物线y=-x2+2x+4运行,传球时,球的出手点P的高度为1.8米,一名防守队员正好处在抛物线所在的平面内,他原地竖直起跳的最大高度为3.2米,问:
(1)球在下落过程中,防守队员原地竖直起跳后在到达最大高度时刚好将球断掉,那么传球时,两人相距多少米?
(2)要使球在运行过程中不被防守队员断掉,且仍按抛物线y=-x2+2x+4运行,那么两人间的距离应在什么范围内?(结果保留根号)

manfen5.com 满分网 查看答案
学校为了美化校园环境,在一块长40米、宽20米的长方形空地上计划新建一块长9米、宽7米的长方形花圃.
(1)若请你在这块空地上设计一个长方形花圃,使它的面积比学校计划新建的长方形花圃的面积多1平方米,请你给出你认为合适的三种不同的方案;
(2)在学校计划新建的长方形花圃周长不变的情况下,长方形花圃的面积能否增加2平方米?如果能,请求出长方形花圃的长和宽;如果不能,请说明理由.
查看答案
如图,在Rt△ABC中,∠B=90°,BC>AB.
(1)在BC边上找一点P,使BP=BA,分别过点B,P作AC的垂线BD,PE,垂足为D,E;
(2)在四条线段AD,BD,DE,PE中,某些线段之间存在一定的数量关系.请你写出一个等式表示这个数量关系(等式中含有其中的2条或3条线段),并说明等式成立的理由.

manfen5.com 满分网 查看答案
在两个布袋里分别装有三张卡片,每个布袋的三张卡片中2张写着“月”,1张写着“日”,其他没有区别.把两袋里的卡片都搅匀后,再闭上眼睛分别从两袋里各取出一张卡片,试求出两张卡片能组成“朋”字的概率(要求用树状图或列表法求解).
查看答案
已知:如图,∠PAC=30°,在射线AC上顺次截取AD=3cm,DB=10cm,以DB为直径作⊙O交射线AP于E、F两点,求圆心O到AP的距离及EF的长.

manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.