满分5 > 初中数学试题 >

如图1,已知正比例函数和反比例函数的图象都经过点M(-2,-1),且P(-1,-...

如图1,已知正比例函数和反比例函数的图象都经过点M(-2,-1),且P(-1,-2)为双曲线上的一点,Q为坐标平面上一动点,PA垂直于x轴,QB垂直于y轴,垂足分别是A、B.
(1)写出正比例函数和反比例函数的关系式;
(2)当点Q在直线MO上运动时,直线MO上是否存在这样的点Q,使得△OBQ与△OAP面积相等?如果存在,请求出点的坐标,如果不存在,请说明理由;
(3)如图2,当点Q在第一象限中的双曲线上运动时,作以OP、OQ为邻边的平行四边形OPCQ,求平行四边形OPCQ周长的最小值.manfen5.com 满分网manfen5.com 满分网
(1)正比例函数和反比例函数的图象都经过点M(-2,-1),设出正比例函数和反比例函数的解析式,运用待定系数法可求它们解析式; (2)因为P(-1,-2)为双曲线Y=上的一点,所以△OBQ、△OAP面积为1,依据反比例函数的图象和性质,点Q在双曲线上,即符合条件的点存在,是正比例函数和反比例函数的图象的交点; (3)因为四边形OPCQ是平行四边形,所以OP=CQ,OQ=PC,而点P(-1,-2)是定点,所以OP的长也是定长,所以要求平行四边形OPCQ周长的最小值就只需求OQ的最小值. 【解析】 (1)设正比例函数解析式为y=kx, 将点M(-2,-1)坐标代入得k=,所以正比例函数解析式为y=x, 同样可得,反比例函数解析式为; (2)当点Q在直线OM上运动时, 设点Q的坐标为Q(m,m), 于是S△OBQ=OB•BQ=×m×m=m2, 而S△OAP=|(-1)×(-2)|=1, 所以有,m2=1,解得m=±2, 所以点Q的坐标为Q1(2,1)和Q2(-2,-1); (3)因为四边形OPCQ是平行四边形,所以OP=CQ,OQ=PC, 而点P(-1,-2)是定点,所以OP的长也是定长, 所以要求平行四边形OPCQ周长的最小值就只需求OQ的最小值,(8分) 因为点Q在第一象限中双曲线上,所以可设点Q的坐标为Q(n,), 由勾股定理可得OQ2=n2+=(n-)2+4, 所以当(n-)2=0即n-=0时,OQ2有最小值4, 又因为OQ为正值,所以OQ与OQ2同时取得最小值, 所以OQ有最小值2,由勾股定理得OP=, 所以平行四边形OPCQ周长的最小值是2(OP+OQ)=2(+2)=2+4.(10分)
复制答案
考点分析:
相关试题推荐
如图,⊙A和⊙B都与x轴和y轴相切,圆心A和圆心B都在反比例函数manfen5.com 满分网的图象上,则图中阴影部分的面积等于______

manfen5.com 满分网 查看答案
如图是一个反比例函数图象的一部分,点A(1,10),B(10,1)是它的端点.
(1)求此函数的解析式,并写出自变量x的取值范围;
(2)请你举出一个能用本题的函数关系描述的生活实例.

manfen5.com 满分网 查看答案
一张边长为16cm正方形的纸片,剪去两个面积一定且一样的小矩形得到一个“E”图案如图1所示.小矩形的长x(cm)与宽y(cm)之间的函数关系如图2所示:
(1)求y与x之间的函数关系式;
(2)“E”图案的面积是多少?
(3)如果小矩形的长是6≤x≤12cm,求小矩形宽的范围.

manfen5.com 满分网 查看答案
已知M=manfen5.com 满分网、N=manfen5.com 满分网,用“+”或“-”连接M、N,有三种不同的形式,M+N、M-N、N-M,请你任取其中一种进行计算,并简求值,其中x:y=5:2.
查看答案
一个圆柱形容器的容积为V立方米,开始用一根小水管向容器内注水,水面高度达到容器高度一半后,改用一根口径为小水管2倍的大水管注水.向容器中注满水的全过程共用时间t分.求两根水管各自注水的速度.
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.