满分5 > 初中数学试题 >

清朝康熙皇帝是我国历史上对数学很有兴趣的帝王.近日,西安发现了他的数学专著,其中...

清朝康熙皇帝是我国历史上对数学很有兴趣的帝王.近日,西安发现了他的数学专著,其中有一文《积求勾股法》,它对“三边长为3、4、5的整数倍的直角三角形,已知面积求边长”这一问题提出了解法:“若所设者为积数(面积),以积率六除之,平方开之得数,再以勾股弦各率乘之,即得勾股弦之数”.用现在的数学语言表述是:“若直角三角形的三边长分别为3、4、5的整数倍,设其面积为S,则第一步:manfen5.com 满分网=m;第二步:manfen5.com 满分网=k;第三步:分别用3、4、5乘k,得三边长”.
(1)当面积S等于150时,请用康熙的“积求勾股法”求出这个直角三角形的三边长;
(2)你能证明“积求勾股法”的正确性吗请写出证明过程.
先由题中所给的条件找出字母所代表的关系,然后套用公式解题. 【解析】 (1)当S=150时,k=====5, 所以三边长分别为:3×5=15,4×5=20,5×5=25; (2)证明:三边为3、4、5的整数倍, 设为k倍,则三边为3k,4k,5k, 而三角形为直角三角形且3k、4k为直角边. 其面积S=(3k)•(4k)=6k2, ∴k2=,k=(k>0), 即:将面积除以6,然后开方,即可得到倍数.
复制答案
考点分析:
相关试题推荐
如图,在平面直角坐标系中,直线AB与y轴和x轴分别交于点A、点B,与反比例函数y在第一象限的图象交于点c(1,6)、点D(3,n).过点C作CE上y轴于E,过点D作DF上X轴于F.
(1)求m,n的值;
(2)求直线AB的函数解析式.

manfen5.com 满分网 查看答案
如图1,已知正比例函数和反比例函数的图象都经过点M(-2,-1),且P(-1,-2)为双曲线上的一点,Q为坐标平面上一动点,PA垂直于x轴,QB垂直于y轴,垂足分别是A、B.
(1)写出正比例函数和反比例函数的关系式;
(2)当点Q在直线MO上运动时,直线MO上是否存在这样的点Q,使得△OBQ与△OAP面积相等?如果存在,请求出点的坐标,如果不存在,请说明理由;
(3)如图2,当点Q在第一象限中的双曲线上运动时,作以OP、OQ为邻边的平行四边形OPCQ,求平行四边形OPCQ周长的最小值.manfen5.com 满分网manfen5.com 满分网
查看答案
如图,⊙A和⊙B都与x轴和y轴相切,圆心A和圆心B都在反比例函数manfen5.com 满分网的图象上,则图中阴影部分的面积等于______

manfen5.com 满分网 查看答案
如图是一个反比例函数图象的一部分,点A(1,10),B(10,1)是它的端点.
(1)求此函数的解析式,并写出自变量x的取值范围;
(2)请你举出一个能用本题的函数关系描述的生活实例.

manfen5.com 满分网 查看答案
一张边长为16cm正方形的纸片,剪去两个面积一定且一样的小矩形得到一个“E”图案如图1所示.小矩形的长x(cm)与宽y(cm)之间的函数关系如图2所示:
(1)求y与x之间的函数关系式;
(2)“E”图案的面积是多少?
(3)如果小矩形的长是6≤x≤12cm,求小矩形宽的范围.

manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.