满分5 > 初中数学试题 >

如图,矩形纸片ABCD中,AB=8,将纸片折叠,使顶点B落在边AD的E点上,BG...

如图,矩形纸片ABCD中,AB=8,将纸片折叠,使顶点B落在边AD的E点上,BG=10.
(1)当折痕的另一端F在AB边上时,如图.求△EFG的面积;
(2)当折痕的另一端F在AD边上时,如图.证明四边形BGEF为菱形,并求出折痕GF的长.

manfen5.com 满分网
根据轴对称的性质,折叠前后图形的形状和大小不变和矩形的性质及直角三角形的性质,同角的余角相等,相似三角形的判定和性质,平行四边形和菱形的判定和性质求解. 【解析】 (1)过点G作GH⊥AD,则四边形ABGH为矩形, ∴GH=AB=8,AH=BG=10,由图形的折叠可知△BFG≌△EFG, ∴EG=BG=10,∠FEG=∠B=90°; ∴EH=6,AE=4,∠AEF+∠HEG=90°, ∵∠AEF+∠AFE=90°, ∴∠HEG=∠AFE, 又∵∠EHG=∠A=90°, ∴△EAF∽△GHE, ∴, ∴EF=5, ∴S△EFG=EF•EG=×5×10=25. (2)由图形的折叠可知四边形ABGF≌四边形HEGF, ∴BG=EG,AB=EH,∠BGF=∠EGF, ∵EF∥BG, ∴∠BGF=∠EFG, ∴EF=EG, ∴BG=EF, ∴四边形BGEF为平行四边形, 又∵EF=EG, ∴平行四边形BGEF为菱形; 连接BE, BE,FG互相垂直平分, 在Rt△EFH中, EF=BG=10,EH=AB=8, 由勾股定理可得FH=AF=6, ∴AE=AF+EF=16, ∴BE==8, ∴BO=4, ∴OG==2, ∵四边形BGEF是菱形, ∴FG=2OG=4, 答:折痕GF的长是4.
复制答案
考点分析:
相关试题推荐
已知:如图,在矩形ABCD中,E、F分别是边BC、AB上的点,且EF=ED,EF⊥ED.
求证:AE平分∠BAD.

manfen5.com 满分网 查看答案
如图,这是一张等腰梯形纸片,它的上底长为2,下底长为4,腰长为2,这样的纸片共有5张.打算用其中的几张来拼成较大的等腰梯形,那么你能拼出哪几种不同的等腰梯形?分别画出它们的示意图,并写出它们的周长.

manfen5.com 满分网 查看答案
在矩形ABCD中,点E是AD边上一点,连接BE,且∠ABE=30°,BE=DE,连接BD.点P从点E出发沿射线ED运动,过点P作PQ∥BD交直线BE于点Q.
(1)当点P在线段ED上时(如图1),求证:BE=PD+manfen5.com 满分网PQ;
(2)若BC=6,设PQ长为x,以P、Q、D三点为顶点所构成的三角形面积为y,求y与x的函数关系式(不要求写出自变量x的取值范围);
(3)在②的条件下,当点P运动到线段ED的中点时,连接QC,过点P作PF⊥QC,垂足为F,PF交对角线BD于点G(如图2),求线段PG的长.
manfen5.com 满分网
查看答案
如图,在△ABC中,∠A,∠B的平分线交于点D,DE∥AC交BC于点E,DF∥BC交AC于点F.
(1)点D是△ABC的______心;
(2)求证:四边形DECF为菱形.

manfen5.com 满分网 查看答案
如图,已知△ABC是等边三角形,D、E分别在边BC、AC上,且CD=CE,连接DE并延长至点F,使EF=AE,连接AF、BE和CF.
(1)请在图中找出一对全等三角形,用符号“≌”表示,并加以证明;
(2)判断四边形ABDF是怎样的四边形,并说明理由;
(3)若AB=6,BD=2DC,求四边形ABEF的面积.

manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.