满分5 > 初中数学试题 >

如图,直线l是一条河,P,Q两地相距8千米,P,Q两地到l的距离分别为2千米,5...

如图,直线l是一条河,P,Q两地相距8千米,P,Q两地到l的距离分别为2千米,5千米,欲在l上的某点M处修建一个水泵站,向P,Q两地供水,现有如下四种铺设方案,图中实线表示铺设的管道,则铺设的管道最短的是( )
manfen5.com 满分网
A.manfen5.com 满分网
B.manfen5.com 满分网
C.manfen5.com 满分网
D.manfen5.com 满分网
先分别计算出四个选项中铺设的管道的长度,再比较即可. 【解析】 A、铺设的管道的长度为:PQ+PM=8+2=10(千米); B、∵P′Q2=82-(5-2)2+(5+2)2=104, ∴铺设的管道的长度为:PM+QM=P′M+QM=P′Q=>10(千米); C、铺设的管道的长度为:+5=+3>7+3=10(千米); D、显然铺设的管道的长度PM+QM大于选项B中铺设的管道的长度,即PM+QM>(千米). 故选A.
复制答案
考点分析:
相关试题推荐
著名的“将军饮马”问题:有一位将军骑着马要从A地走到B地,但途中要到水边喂马喝一次水,则将军怎样走最近?
manfen5.com 满分网
查看答案
已知,A,B在直线l的两侧,在l上求一点,使得PA+PB最小.(如图所示)

manfen5.com 满分网 查看答案
如图,在平行四边形ABCD中,AB在x轴上,D点y轴上,∠C=60°,BC=6,B点坐标为(4,0).点M是边AD上一点,且DM:AD=1:3.点E、F分别从A、C同时出发,以1厘米/秒的速度分别沿AB、CB向点B运动(当点F运动到点B时,点E随之停止运动),EM、CD的延长线交于点P,FP交AD于点Q.⊙E半径为manfen5.com 满分网,设运动时间为x秒.
(1)求直线BC的解析式;
(2)当x为何值时,PF⊥AD;
(3)在(2)问条件下,⊙E与直线PF是否相切?如果相切,加以证明,并求出切点的坐标;如果不相切,说明理由.

manfen5.com 满分网 查看答案
在梯形ABCD中,AB∥CD,∠BCD=90°,且AB=1,BC=2,tan∠ADC=2;对角线相交于O点,等腰直角三角板的直角顶点落在梯形的顶点C上,使三角板绕点C旋转.
(1)当三角板旋转到图1的位置时,猜想DE与BF的数量关系,并加以证明;
(2)在(1)问条件下,若BE:CE=1:2,∠BEC=135°,求sin∠BFE的值;
(3)当三角板的一边CF与梯形对角线AC重合时,作DH⊥PE于H,如图2,若OF=manfen5.com 满分网时,求PE及DH的长.manfen5.com 满分网
查看答案
随着大陆惠及台胞政策措施的落实,台湾水果进入了大陆市场.一水果经销商购进了A,B两种台湾水果各10箱,分配给他的甲、乙两个零售店(分别简称甲店、乙店)销售,预计每箱水果的盈利情况如下表:有两种配货方案(整箱配货):
A种水果/箱B种水果/箱
甲店11元17元
乙店9元13元
方案一:甲、乙两店各配货10箱,其中A种水果两店各5箱,B种水果两店各5箱;
方案二:按照甲、乙两店盈利相同配货,其中A种水果甲店______箱,乙店______箱;B种水果甲店______箱,乙店______箱.
(1)如果按照方案一配货,请你计算出经销商能盈利多少元;
(2)请你将方案二填写完整(只写一种情况即可),并根据你填写的方案二与方案一作比较,哪种方案盈利较多;
(3)在甲、乙两店各配货10箱,且保证乙店盈利不少于100元的条件下,请你设计出使水果经销商盈利最大的配货方案,并求出最大盈利为多少?
查看答案
试题属性

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.