已知:如图,O为平面直角坐标系的原点,半径为1的⊙B经过点O,且与x,y轴分交于点A,C,点A的坐标为(-
,0),AC的延长线与⊙B的切线OD交于点D.
(1)求OC的长和∠CAO的度数;
(2)求过D点的反比例函数的表达式.
考点分析:
相关试题推荐
为支援“玉树抗震救灾”,在一次爱心捐款活动中,九(1)班同学人人拿出自己的零花钱,踊跃捐款,学生捐款额有5元、10元、15元、20元共四种情况.根据统计数据绘制了图①和图②两幅尚不完整的统计图.
(1)该班共有______名同学,学生捐款的众数是______元,中位数是______元
(2)请你将图②的统计图补充完整;
(3)计算该班同学平均捐款多少元?
(4)从这个班任意抽取一名学生,这名学生捐款额为10元以上(不含10元)的概率是多少?
查看答案
某大学计划为新生配备如图(1)所示的折叠椅.图(2)是折叠椅撑开后的侧面示意图,其中椅腿AB和CD的长相等,O是它们的中点.为使折叠椅既舒适又牢固,厂家将撑开后的折叠椅高度设计为40cm,∠DOB=100°,求:篷布面的宽AD应设计为多少cm?
(参考数据:sin40°≈0.64,cos40°≈0.77,tan40°≈0.84结果精确到1cm)
查看答案
△ABC在平面直角坐标系中的位置如图所示.
(1)画出△ABC关于y轴对称的△A
1B
1C
1;
(2)将△ABC向右平移6个单位,作出平移后的△A
2B
2C
2,并写出△A
2B
2C
2各顶点的坐标;
(3)观察△A
1B
1C
1和△A
2B
2C
2,它们是否关于某条直线对称?若是,请在图上画出这条对称轴.
查看答案
如图,点D、C在BF上,AC∥DE,∠A=∠E,BD=CF,
(1)求证:AB=EF.
(2)连接AF,BE,猜想四边形ABEF的形状,并说明理由.
查看答案