满分5 > 初中数学试题 >

等边△ABC边长为6,P为BC上一点,含30°、60°的直角三角板60°角的顶点...

等边△ABC边长为6,P为BC上一点,含30°、60°的直角三角板60°角的顶点落在点P上,使三角板绕P点旋转.
(1)如图1,当P为BC的三等分点,且PE⊥AB时,判断△EPF的形状;
(2)在(1)问的条件下,FE、PB的延长线交于点G,如图2,求△EGB的面积;
(3)在三角板旋转过程中,若CF=AE=2,(CF≠BP),如图3,求PE的长.
manfen5.com 满分网
(1)要证三角形EPF是等边三角形,已知了∠EPF=60°,主要再证得PE=PF即可,可通过证三角形PBE和PFC全等来得出结论,再证明全等过程中,可通过证明FP⊥BC和BE=PC来实现; (2)由(1)不难得出∠CFG=90°,那么在三角形CFG中,有∠C的度数,可以根据CF的长求出GC的长,从而求出GB的长,下面的关键就是求GB边上的高,过E作EH⊥BC,那么EH就是所求的高,在直角三角形BEP中,有BP的长,有∠ABC的度数,可以求出BE、EP的长,再根据三角形面积的不同表示方法求出EH的长,这样有了底和高就能求出△GBE的面积; (3)由相似三角形的判定定理得出△BPE∽△CFP,设BP=x,则CP=6-x,由相似三角形的对应边成比例可求出x的值,再根据勾股定理求出PE的值即可. 【解析】 (1)∵PE⊥AB,∠B=60°, 因此直角三角形PEB中,BE=BP=BC=PC, ∴∠BPE=30°, ∵∠EPF=60°, ∴FP⊥BC, ∵∠B=∠C=60°,BE=PC,∠PEB=∠FPC=90°, ∴△BEP≌△CPF, ∴EP=PF, ∵∠EPF=60°, ∴△EPF是等边三角形. (2)过E作EH⊥BC于H, 由(1)可知:FP⊥BC,FC=BP=BC=4,BE=CP=BC=2, 在三角形FCP中,∠PFC=90°-∠C=30°, ∵∠PFE=60°, ∴∠GFC=90°, 直角三角形FGC中,∠C=60°,CF=4, ∴GC=2CF=8, ∴GB=GC-BC=2, 直角三角形BEP中∠EBP=60°,BP=4, ∴PE=2,BE=2, ∴EH=BE•PE÷BP=, ∴S△GBE=BG•EH=; (3))∵在△BPE中,∠B=60°, ∴∠BEP+∠BPE=120°, ∵∠EPF=60°, ∴∠BPE+∠FPC=120°, ∴∠BEP=∠FPC, 又∵∠B=∠C, ∴△BPE∽△CFP, ∴, 设BP=x,则CP=6-x. ∴=, 解得:x=2或4. 当x=2时,在三角形△BEP中,∠B=60°,BE=4,BP=2, 过E作EH⊥BC于H, 则EH=BE•sin∠B=2,BH=2, ∴PH=0, 即P与H重合,与CF≠BP矛盾,故x=2不合题意,舍去; 当x=4时,在三角形△BEP中,∠B=60°,BE=4,BP=4, 则△BEP是等边三角形, ∴PE=4. 故PE=4.
复制答案
考点分析:
相关试题推荐
现计划把甲种货物1240吨和乙种货物880吨用一列货车运往某地,已知这列货车挂有A、B两种不同规格的货车厢共40节,使用A型车厢每节费用为6000元,使用B型车相每节费用为8000元.
(1)设运送这批货物的总费用为y万元,这列货车挂A型车厢x节,试写出y与x之间的函数关系式;
(2)如果每节A型车厢最多可装甲种货物35吨和乙种货物15吨,每节B型车厢最多可装甲种货物25吨和乙种货物35吨,装货时按此要求安排A、B两种车厢的节数,那么共有哪几种安排车厢的方案?
(3)在上述方案中,哪个方案运费最省最少运费为多少元?
查看答案
小玲初中就要毕业了,她就本班同学的升学志愿进行了一次调查统计,她通过采集数据后,绘制了两幅不完整的统计图.请你根据图中提供的信息,解答下列问题:
(1)求出该班的总人数;
(2)请你把图(一)、图(二)的统计图补充完整;
(3)如果小玲所在年级共有600名学生,请你估计全年级想就读职高的学生人数.
manfen5.com 满分网
查看答案
在△ABC中,借助作图工具可以作出中位线EF,沿着中位线EF一刀剪开后,用得到的△AEF和四边形EBCF可以拼成平行四边形EBCP,剪切线与拼图如图①所示,仿上述方法,按要求完成下列操作设计,并在规定位置画出图示.
(1)在△ABC中,增加条件:______,沿着______一刀剪切后可以拼成矩形,剪切线与拼图画在图②的位置;
(2)在△ABC中,增加条件:______,沿着______一刀剪切后可以拼成正方形,剪切线与拼图画在图③的位置.
manfen5.com 满分网
查看答案
将两块完全相同的等腰直角三角形,摆成如图所示的样子,假设图形中所有的点和线段都在一个平面内,回答下列问题:
(1)图中有多少个三角形,把它们一一写出来;
(2)图中有相似(不包括全等)三角形吗?如果有把它们一一写出来.

manfen5.com 满分网 查看答案
如图,在平面直角坐标系中,已知△ABC的顶点坐标A(0,4),B(-2,0),C(2,0).
(1)写出△DEF的顶点坐标;
(2)将△ABC变换至△DEF要通过什么变换?请说明;
(3)画出△ABC关于x轴的轴反射图形.

manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.