如图,在平面直角坐标系中,Rt△AOC的顶点A(-1,3),∠ACO=90°,点O为坐标原点.将Rt△AOC绕点O顺时针旋转90°,得到Rt△A′OC′.设直线AA′与x轴交于点M、与y轴交于点N,抛物线经过点C、M、N.解答下列问题:
(1)求直线AA′的解析式;
(2)求抛物线的解析式;
(3)在抛物线上是否存在这样的点P,使四边形PA′C′N成为直角梯形?若存在,求出点P的坐标;若不存在,说明理由.
考点分析:
相关试题推荐
某种子培育基地用A,B,C,D四种型号的小麦种子共2 000粒进行发芽实验,从中选出发芽率高的种子进行推广.通过实验得知,D型号种子的发芽率为94%,根据实验数据绘制了图1和图2两幅尚不完整的统计图.
(1)A型号种子的粒数是______;
(2)请你将图1和图2的统计图补充完整;
(3)现要淘汰两种型号的种子,请你通过计算说明,要淘汰哪两种型号的种子;
(4)若将所有已发芽的种子放到一起,从中随机取出一粒,求取到B型号发芽种子的概率.
查看答案
已知:如图,在△ABC中,AB=AC,以AB为直径的⊙O交BC于点D,过点D作DE⊥AC于点E.
(1)求证:DE是⊙O的切线;
(2)若∠CAB=120°,⊙O的半径等于5,求线段BC的长.
查看答案
如图,一艘核潜艇在海面下500米A点处测得俯角为30°正前方的海底有黑匣子信号发出,继续在同一深度直线航行4000米后再次在B点处测得俯角为60°正前方的海底有黑匣子信号发出,求海底黑匣子C点处距离海面的深度?(精确到米,参考数据:
≈1.414,
≈1.732,
≈2.236)
查看答案
(1)计算:
.
(2)某服装厂准备加工300套演出服.在加工60套后,采用了新技术,使每天的工作效率是原来的2倍,结果共用9天完成任务.求该厂原来每天加工多少套演出服.
查看答案
如图,把一个棱长为3的正方体的每个面等分成9个小正方形,然后沿每个面正中心的一个正方形向里挖空(相当于挖去了7个小正方体),所得到的几何体的表面积是
.
查看答案