如图,正方形ABCD中,AC是对角线,今有较大的直角三角板,一边始终经过点B,直角顶点P在射线AC上移动,另一边交DC于Q.
(1)如图1,当点Q在DC边上时,猜想并写出PB与PQ所满足的数量关系;并加以证明;
(2)如图2,当点Q落在DC的延长线上时,猜想并写出PB与PQ满足的数量关系,请证明你的猜想.
考点分析:
相关试题推荐
操作示例:
对于边长为a的两个正方形ABCD和EFGH,按图1所示的方式摆放,在沿虚线BD,EG剪开后,可以按图中所示的移动方式拼接为图1中的四边形BNED.
从拼接的过程容易得到结论:
①四边形BNED是正方形;
②S
正方形ABCD+S
正方形EFGH=S
正方形BNED.
实践与探究:
(1)对于边长分别为a,b(a>b)的两个正方形ABCD和EFGH,按图2所示的方式摆放,连接DE,过点D作DM⊥DE,交AB于点M,过点M作MN⊥DM,过点E作EN⊥DE,MN与EN相交于点N;
①证明四边形MNED是正方形,并用含a,b的代数式表示正方形MNED的面积;
②在图2中,将正方形ABCD和正方形EFGH沿虚线剪开后,能够拼接为正方形MNED,请简略说明你的拼接方法(类比图1,用数字表示对应的图形);
(2)对于n(n是大于2的自然数)个任意的正方形,能否通过若干次拼接,将其拼接成为一个正方形?请简要说明你的理由.
查看答案
如图,直线y=
x-4与x轴交于点A,与y轴交于点C,已知二次函数y=
x
2+bx+c的图象经过点A和C,和x轴的另一个交点为B.
(1)求该二次函数的关系式;
(2)直接写出该抛物线的对称轴及顶点M的坐标;
(3)求四边形ABCM的面积S.
查看答案
某班同学分三组进行数学活动,对七年级400名同学最喜欢喝的饮料情况,八年级300名同学零花钱的最主要用途情况,九年级300名同学完成家庭作业时间情况进行了全面调查,并分别用扇形图、频数分布直方图、表格来描述整理得到的数据.
时间 | 1小时左右 | 1.5小时左右 | 2小时左右 | 2.5小时左右 |
人数 | 50 | 80 | 120 | 50 |
根据以上信息,请回答下列问题:
(1)七年级400名同学中最喜欢喝“冰红茶”的人数是多少;
(2)补全八年级300名同学中零花钱的最主要用途情况频数分布直方图;
(3)九年级300名同学中完成家庭作业的平均时间大约是多少小时?(结果保留一位小数)
查看答案
如图,△ABC中AB=BC,以AB为直径的⊙O交AC于D点,直线DP⊥BC于点E.
(1)求证:直线DP是⊙O的切线;
(2)若∠ABC=120°,AB=4cm,求AC的长.
查看答案