满分5 > 初中数学试题 >

已知:如图,△ABC中,∠C=90°,AC=3厘米,CB=4厘米.两个动点P、Q...

已知:如图,△ABC中,∠C=90°,AC=3厘米,CB=4厘米.两个动点P、Q分别从A、C两点同时按顺时针方向沿△ABC的边运动.当点Q运动到点A时,P、Q两点运动即停止.点P、Q的运动速度分别为1厘米/秒、2厘米/秒,设点P运动时间为t(秒).
(1)当时间t为何值时,以P、C、Q三点为顶点的三角形的面积(图中的阴影部分)等于2厘米2
(2)当点P、Q运动时,阴影部分的形状随之变化.设PQ与△ABC围成阴影部分面积为S(厘米2),求出S与时间t的函数关系式,并指出自变量t的取值范围;
(3)点P、Q在运动的过程中,阴影部分面积S有最大值吗?若有,请求出最大值;若没有,请说明理由.

manfen5.com 满分网
(1)由于PC=3-t,CQ=2t,∠C=90°,可表示S△PCQ,从而求出t的值; (2)根据运动状态,分三种可能情况:①当0<t≤2时,②当2<t≤3时,③当3<t≤4.5时,分别表示阴影部分面积,在②中,S=S△ABC-S△APQ,由,∠C=90°,AC=3厘米,CB=4厘米,用勾股定理可求AB=5厘米,作PH⊥AB于H,利用相似比表示PH,再表示面积; (3)用(2)的结论,分别求出每一种情况下的最大值(注意自变量取值范围),再比较,求出整个过程中的最大值. 【解析】 (1) S△PCQ=PC•CQ=(3-t)•2t=(3-t)t=2, 解得t1=1,t2=2. ∴当时间t为1秒或2秒时,S△PCQ=2厘米2; (2)①当0<t≤2时,S△PCQ=PC•CQ=(3-t)•2t=(3-t)t,S=-t2+3t; ②当2<t≤3时,AQ=9-2t, 作PH⊥AB于H,则△AHP∽△ACB, ∴PH:BC=AP:AB ∴PH=t, ∴S=S△ABC-S△APQ,即S=t2-t+6; ③在3<t≤4.5时,CP=t-AC=t-3,则BP=BC-PC=4-(t-3)=7-t, ∵△ABC∽△PBH, ∴=,即=, 故PH=, 又∵BQ=2t-BC=2t-4, ∴S=BQ•PH=(2t-4)•=-t2+t-; (3)有最大值. ①在0<t≤2时,S=-t2+3t=-(t-)2+,当t=,S有最大值,S1=; ②在2<t≤3时,S=t2-t+6=(t-)2+,当t=,S有最大值,S2=; ③在3<t≤4.5时,S=-t2+t-=-(t-)2+,当t=,S有最大值,S3=; ∵S2<S1<S3 ∴t=时,S有最大值,S最大值=.
复制答案
考点分析:
相关试题推荐
manfen5.com 满分网已知二次函数的图象如图所示.
(1)求二次函数的解析式及抛物线顶点M的坐标;
(2)若点N为线段BM上的一点,过点N作x轴的垂线,垂足为点Q.当点N在线段BM上运动时(点N不与点B,点M重合),设NQ的长为t,四边形NQAC的面积为s,求s与t之间的函数关系式及自变量t的取值范围;
(3)在对称轴右侧的抛物线上是否存在点P,使△PAC为直角三角形?若存在,求出所有符合条件的点P的坐标;若不存在,请说明理由;
(4)将△OAC补成矩形,使上△OAC的两个顶点成为矩形一边的两个顶点,第三个顶点落在矩形这一边的对边上,试直接写出矩形的未知的顶点坐标(不需要计算过程).
查看答案
已知:m、n是方程x2-6x+5=0的两个实数根,且m<n,抛物线y=-x2+bx+c的图象经过点manfen5.com 满分网A(m,0)、B(0,n).
(1)求这个抛物线的解析式;
(2)设(1)中抛物线与x轴的另一交点为C,抛物线的顶点为D,试求出点C、D的坐标和△BCD的面积;
(3)P是线段OC上的一点,过点P作PH⊥x轴,与抛物线交于H点,若直线BC把△PCH分成面积之比为2:3的两部分,请求出P点的坐标.
查看答案
如图,AB切⊙O于点B,OA交⊙O于C点,过C作DC⊥OA交AB于D,且BD:AD=1:2.
(1)求∠A的正切值;
(2)若OC=1,求AB及manfen5.com 满分网的长.

manfen5.com 满分网 查看答案
如图,⊙O1和⊙O内切于点A,AB为⊙O的直径,点O1在OA上,⊙O的弦BC切⊙O1于点D,两圆的半径R=4,r=3.
(1)求BD的长;
(2)求CD的长.

manfen5.com 满分网 查看答案
将正面分别标有数字6,7,8,背面花色相同的三张卡片洗匀后,背面朝上放在桌面上.
(1)随机地抽取一张,求P(偶数);
(2)随机地抽取一张作为个位上的数字(不放回),再抽取一张作为十位上的数字,能组成哪些两位数恰好为“68”的概率是多少?
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.