已知二次函数y=mx
2+(m-3)x-3(m>0)的图象如图所示.
(1)这条抛物线与x轴交于两点A(x
1,0)、B(x
2,0)(x
1<x
2),与y轴交于点C,且AB=4,⊙M过A、B、C三点,求扇形MAC的面积;
(2)在(1)的条件下,抛物线上是否存在点P,使△PBD(PD垂直于x轴,垂足为D)被直线BC分成面积比为1:2的两部分?若存在,请求出P点坐标;若不存在,请说明理由.
考点分析:
相关试题推荐
如图,在直角坐标系中,以点P(1,-1)为圆心,2为半径作圆,交x轴于A、B两点,抛物线y=ax
2+bx+c(a>0)过点A、B,且顶点C在⊙P上.
(1)求⊙P上劣弧AB的长;
(2)求抛物线的解析式;
(3)在抛物线上是否存在一点D,使线段OC与PD互相平分?若存在,求出点D的坐标;若不存在,请说明理由.
查看答案
已知:如图,抛物线y=ax
2+bx+c的顶点C在以D(-2,-2)为圆心,4为半径的圆上,且经过⊙D与x轴的两个交点A、B,连接AC、BC、OC.
(1)求点C的坐标;
(2)求图中阴影部分的面积;
(3)在抛物线上是否存在点P,使DP所在直线平分线段OC?若存在,求出点P的坐标;若不存在,请说明理由.
查看答案
在平面直角坐标系xOy中,已知二次函数y=ax
2+bx+c(a≠0)的图象与x轴交于A,B两点(点A在点B的左边),与y轴交于点C,其顶点的横坐标为1,且过点(2,3)和(-3,-12).
(1)求此二次函数的表达式;
(2)若直线l:y=kx(k≠0)与线段BC交于点D(不与点B,C重合),则是否存在这样的直线l,使得以B,O,D为顶点的三角形与△BAC相似?若存在,求出该直线的函数表达式及点D的坐标;若不存在,请说明理由;
(3)若点P是位于该二次函数对称轴右边图象上不与顶点重合的任意一点,试比较锐角∠PCO与∠ACO的大小(不必证明),并写出此时点P的横坐标x
p的取值范围.
查看答案
如图,已知与x轴交于点A(1,0)和B(5,0)的抛物线l
1的顶点为C(3,4),抛物线l
2与l
1关于x轴对称,顶点为C′.
(1)求抛物线l
2的函数关系式;
(2)已知原点O,定D(0,4),l
2上的点P与l
1上的P′始终关于x轴对称,则当点P运动到何处时,以点D、O、P、P′为顶点的四边形是平行四边形?
(3)设l
2上的点M、N分别与l
1上的点M′、N′始终关于x轴对称.是否存在点M、N(M在N的左侧),使四边形MNN´M´是正方形?若存在,求出点M的坐标;若不存在,说明理由.
查看答案
如图,已知与x轴交于点A(1,0)和B(5,0)的抛物线的顶点为C(3,4),抛物线l
2与l
1关于x轴对称,顶点为C′.
(1)求抛物线l
2的函数关系式;
(2)已知原点O,定点D(0,4),l
2上的点P与l
1上的点P′始终关于x轴对称,则当点P运动到何处时,以点D,O,P,P′为顶点的四边形是平行四边形?
(3)在l
2上是否存在点M,使△ABM是以AB为斜边且一个角为30°的直角三角形?若存在,求出点M的坐标;若不存在,说明理由.
查看答案