满分5 > 初中数学试题 >

如图,已知抛物线y=ax2+bx-3与x轴交于A、B两点,与y轴交于C点,经过A...

如图,已知抛物线y=ax2+bx-3与x轴交于A、B两点,与y轴交于C点,经过A、B、C三点的圆的圆心M(1,m)恰好在此抛物线的对称轴上,⊙M的半径为manfen5.com 满分网.设⊙M与y轴交于D,抛物线的顶点为E.
(1)求m的值及抛物线的解析式;
(2)设∠DBC=α,∠CBE=β,求sin(α-β)的值;
(3)探究坐标轴上是否存在点P,使得以P、A、C为顶点的三角形与△BCE相似?若存在,请指出点P的位置,并直接写出点P的坐标;若不存在,请说明理由.

manfen5.com 满分网
(1)根据题意与图象可得点C的坐标,根据圆的性质可得点B的坐标,根据对称轴方程与点B的坐标即可求得函数的解析式; (2)由抛物线的解析式可求得点A,E,B,C,D的坐标,判断Rt△BOD∽Rt△BCE,得∠CBE=∠OBD=β,因此sin(α-β)=sin(∠DBC-∠OBD)=sin∠OBC=; (3)显然Rt△COA∽Rt△BCE,此时点P1(0,0), 过A作AP2⊥AC交y正半轴于P2,由Rt△CAP2∽Rt△BCE,得P2(0,), 过C作CP3⊥AC交x正半轴于P3,由Rt△P3CA∽Rt△BCE,得P3(9,0), 故在坐标轴上存在三个点P1(0,0),P2(0,),P3(9,0),使得以P、A、C为顶点的三角形与△BCE相似. 【解析】 (1)由题意可知C(0,-3),-=1, ∴抛物线的解析式为y=ax2-2ax-3(a>0), 过M作MN⊥y轴于N,连接CM,则MN=1,CM=, ∴CN=2,于是m=-1. 同理可求得B(3,0), ∴a×32-2a×3-3=0,得a=1. ∴抛物线的解析式为y=x2-2x-3. (2)由(1)得A(-1,0),E(1,-4),B(3,0),C(0,-3). ∵M到AB,CD的距离相等,OB=OC, ∴OA=OD, ∴点D的坐标为(0,1), ∴在Rt△BCO中,BC==3, ∴, 在△BCE中,∵BC2+CE2=(32+32)+[(1-0)2+(-4+3)2]=20=(3-1)2+(0+4)2=BE2 ∴△BCE是Rt△ , ∴, 即, ∴Rt△BOD∽Rt△BCE,得∠CBE=∠OBD=β, 因此sin(α-β)=sin(∠DBC-∠OBD)=sin∠OBC=. (3)显然Rt△COA∽Rt△BCE,此时点P1(0,0). 过A作AP2⊥AC交y正半轴于P2, 由Rt△CAP2∽Rt△BCE,得P2(0,). 过C作CP3⊥AC交x正半轴于P3,由Rt△P3CA∽Rt△BCE,得P3(9,0). 故在坐标轴上存在三个点P1(0,0),P2(0,),P3(9,0), 使得以P、A、C为顶点的三角形与△BCE相似.
复制答案
考点分析:
相关试题推荐
已知二次函数y=mx2+(m-3)x-3(m>0)的图象如图所示.
(1)这条抛物线与x轴交于两点A(x1,0)、B(x2,0)(x1<x2),与y轴交于点C,且AB=4,⊙M过A、B、C三点,求扇形MAC的面积;
(2)在(1)的条件下,抛物线上是否存在点P,使△PBD(PD垂直于x轴,垂足为D)被直线BC分成面积比为1:2的两部分?若存在,请求出P点坐标;若不存在,请说明理由.

manfen5.com 满分网 查看答案
如图,在直角坐标系中,以点P(1,-1)为圆心,2为半径作圆,交x轴于A、B两点,抛物线y=ax2+bx+c(a>0)过点A、B,且顶点C在⊙P上.
(1)求⊙P上劣弧AB的长;
(2)求抛物线的解析式;
(3)在抛物线上是否存在一点D,使线段OC与PD互相平分?若存在,求出点D的坐标;若不存在,请说明理由.

manfen5.com 满分网 查看答案
已知:如图,抛物线y=ax2+bx+c的顶点C在以D(-2,-2)为圆心,4为半径的圆上,且经过⊙D与x轴的两个交点A、B,连接AC、BC、OC.
(1)求点C的坐标;
(2)求图中阴影部分的面积;
(3)在抛物线上是否存在点P,使DP所在直线平分线段OC?若存在,求出点P的坐标;若不存在,请说明理由.

manfen5.com 满分网 查看答案
在平面直角坐标系xOy中,已知二次函数y=ax2+bx+c(a≠0)的图象与x轴交于A,B两点(点A在点B的左边),与y轴交于点C,其顶点的横坐标为1,且过点(2,3)和(-3,-12).
(1)求此二次函数的表达式;
(2)若直线l:y=kx(k≠0)与线段BC交于点D(不与点B,C重合),则是否存在这样的直线l,使得以B,O,D为顶点的三角形与△BAC相似?若存在,求出该直线的函数表达式及点D的坐标;若不存在,请说明理由;
(3)若点P是位于该二次函数对称轴右边图象上不与顶点重合的任意一点,试比较锐角∠PCO与∠ACO的大小(不必证明),并写出此时点P的横坐标xp的取值范围.

manfen5.com 满分网 查看答案
如图,已知与x轴交于点A(1,0)和B(5,0)的抛物线l1的顶点为C(3,4),抛物线l2与l1关于x轴对称,顶点为C′.
(1)求抛物线l2的函数关系式;
(2)已知原点O,定D(0,4),l2上的点P与l1上的P′始终关于x轴对称,则当点P运动到何处时,以点D、O、P、P′为顶点的四边形是平行四边形?
(3)设l2上的点M、N分别与l1上的点M′、N′始终关于x轴对称.是否存在点M、N(M在N的左侧),使四边形MNN´M´是正方形?若存在,求出点M的坐标;若不存在,说明理由.

manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.