满分5 > 初中数学试题 >

如图,在△ABC中,AB=AC=a,M为底边BC上的任意一点,过点M分别作AB、...

如图,在△ABC中,AB=AC=a,M为底边BC上的任意一点,过点M分别作AB、AC的平行线交AC于P,交AB于Q.
(1)求四边形AQMP的周长;
(2)写出图中的两对相似三角形(不需证明);
(3)M位于BC的什么位置时,四边形AQMP为菱形并证明你的结论.

manfen5.com 满分网
(1)根据平行四边形的性质可得到对应角相等对应边相等,从而不难求得其周长; (2)因为∠B=∠C=∠PMC=∠QMB,所以△PMC∽△QMB∽△ABC; (3)根据中位线的性质及菱形的判定不难求得四边形AQMP为菱形. 【解析】 (1)∵AB∥MP,QM∥AC, ∴四边形APMQ是平行四边形,∠B=∠PMC,∠C=∠QMB. ∵AB=AC, ∴∠B=∠C, ∴∠PMC=∠QMB. ∴BQ=QM,PM=PC. ∴四边形AQMP的周长=AQ+AP+QM+MP=AQ+QB+AP+PC=AB+AC=2a. (2)∵PM∥AB, ∴△PCM∽△ACB, ∵QM∥AC, ∴△BMQ∽△BCA; (3)当点M在BC的中点时,四边形APMQ是菱形, ∵AB∥MP,点M是BC的中点, ∴==, ∴P是AC的中点, ∴PM是三角形ABC的中位线, 同理:QM是三角形ABC的中位线. ∵AB=AC, ∴QM=PM=AB=AC. 又由(1)知四边形APMQ是平行四边形, ∴平行四边形APMQ是菱形.
复制答案
考点分析:
相关试题推荐
如图,方格纸中每个小方格都是边长为1的正方形,我们把以格点连线为边的多边形称为“格点多边形”,如图1中四边形ABCD就是一个“格点四边形”.
(1)求图1中四边形ABCD的面积;
(2)在图2方格纸中画一个格点三角形EFG,使△EFG的面积等于四边形ABCD的面积且为轴对称图形.
manfen5.com 满分网
查看答案
先化简,再求值:(manfen5.com 满分网)÷manfen5.com 满分网,其中x=2005tan45°.
查看答案
如图,将矩形纸片ABCD沿AE向上折叠,使点B落在DC边上的F点处.若△AFD的周长为9,△ECF的周长为3,则矩形ABCD的周长为   
manfen5.com 满分网 查看答案
如图,是由若干盆花组成的形如正多边形的图案,每条边(包括两个顶点)有n(n>2)盆花,每个图案中花盆总数为S,按此规律推断S与n(n≥3)的关系式是:S=   
manfen5.com 满分网 查看答案
如图,在Rt△ABC中,∠C=90°,AC=3,BC=4,若以C为圆心,R为半径所作的圆与斜边AB有两个交点,则R的取值范围是   
manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.