把两个全等的直角三角板ABC和EFG叠放在一起,使三角板EFG的直角顶点G与三角板ABC的斜边中点O重合,其中∠B=∠F=30°,斜边AB和EF长均为4.
(1)当EG⊥AC于点K,GF⊥BC于点H时(如图①),求GH:GK的值;
(2)现将三角板EFG由图①所示的位置绕O点沿逆时针方向旋转,旋转角α满足条件:0°<α<30°(如图②),EG交AC于点K,GF交BC于点H,GH:GK的值是否改变?证明你发现的结论;
(3)在②下,连接HK,在上述旋转过程中,设GH=x,△GKH的面积为y,求y与x之间的函数关系式,并写出自变量x的取值范围;
(4)三角板EFG由图①所示的位置绕O点逆时针旋转时,0°<α≤90°,是否存在某位置使△BFG是等腰三角形?若存在,请直接写出相应的旋转角α;若不存在,说明理由.
考点分析:
相关试题推荐
国家为了关心广大农民群众,增强农民抵御大病风险的能力,积极推行农村医疗保险制度,某市根据本地的实际情况,制定了纳入医疗保险的农民医疗费报销规定,享受医保的农民可在定点医院就医,在规定的药品品种范围内用药,由患者先垫付医疗费用,年终到医保中心报销,医疗费的报销比例标准如下表:
费用范围 | 500元以下(含500元) | 超过500元且不超过10000元的部分 | 超过10000元的部分 |
报销比例标准 | 不予报销 | 70% | 80% |
(1)设某农民一年的实际医疗费为x元(500<x<10000),按标准报销的金额为y元,试求y与x的函数关系式;
(2)若某农民一年内自付医疗费为2600元,(自付医疗费=实际医疗费-按标准报销的金额),则该农民当年实际医疗费为多少元?
(3)若某农民一年内自付医疗费不少于4100元,则该农民当年实际医疗费至少为多少元?
查看答案
某中学团委会为研究该校学生的课余活动情况,采取抽样的方法,从阅读、运动、娱乐、其它等四个方面调查了若干名学生的兴趣爱好,并将调查的结果绘制了如下的两幅不完整的统计图(如图1,图2),请你根据图中提供的信息解答下列问题:
(1)在这次研究中,一共调查了多少名学生?
(2)“其它”在扇形图中所占的圆心角是多少度?
(3)补全频数分布折线图.
查看答案
如图,把一个等腰直角△ABC沿斜边上的中线CD(裁剪线)剪一刀,把分割成的两部分拼成一个四边形A′BCD,如示意图(1).(以下有画图要求的,工具不限,不必写画法和证明)
(1)猜一猜:四边形A′BCD一定是______;
(2)试一试:按上述的裁剪方法,请你拼一个与图(1)不同的四边形,并在图(2)中画出示意图.
[探究]在等腰直角△ABC中,请你沿一条中位线(裁剪线)剪一刀,把分割成的两部分拼成一个特殊四边形.
(1)想一想:你能拼得的特殊四边形分别是______;(写出两种)
(2)画一画:请分别在图(3)、图(4)中画出你拼得的这两个特殊四边形的示意图.
[拓展]在等腰直角△ABC中,请你沿一条与中线、中位线不同的裁剪线剪一刀,把分割成的两部分拼成一个特殊四边形.
(1)变一变:你确定的裁剪线是______,(写出一种)拼得的特殊四边形是______;
(2)拼一拼:请在图(5)中画出你拼得的这个特殊四边形的示意图.
查看答案
如图,在△ABC中,AB=AC=a,M为底边BC上的任意一点,过点M分别作AB、AC的平行线交AC于P,交AB于Q.
(1)求四边形AQMP的周长;
(2)写出图中的两对相似三角形(不需证明);
(3)M位于BC的什么位置时,四边形AQMP为菱形并证明你的结论.
查看答案
如图,方格纸中每个小方格都是边长为1的正方形,我们把以格点连线为边的多边形称为“格点多边形”,如图1中四边形ABCD就是一个“格点四边形”.
(1)求图1中四边形ABCD的面积;
(2)在图2方格纸中画一个格点三角形EFG,使△EFG的面积等于四边形ABCD的面积且为轴对称图形.
查看答案