满分5 > 初中数学试题 >

已知,在Rt△OAB中,∠OAB=90°,∠BOA=30°,AB=2.若以O为坐...

已知,在Rt△OAB中,∠OAB=90°,∠BOA=30°,AB=2.若以O为坐标原点,OA所在直线为x轴,建立如图所示的平面直角坐标系,点B在第一象限内.将Rt△OAB沿OB折叠后,点A落在第一象限内的点C处.
(1)求点C的坐标;
(2)若抛物线y=ax2+bx(a≠0)经过C、A两点,求此抛物线的解析式;
(3)若上述抛物线的对称轴与OB交于点D,点P为线段DB上一动点,过P作y轴的平行线,交抛物线于点M,问:是否存在这样的点P,使得四边形CDPM为等腰梯形?若存在,请求出此时点P的坐标;若不存在,请说明理由.

manfen5.com 满分网
(1)在Rt△AOB中,根据AB的长和∠BOA的度数,可求得OA的长,根据折叠的性质即可得到OA=OC,且∠BOC=∠BOA=30°,过C作CD⊥x轴于D,即可根据∠COD的度数和OC的长求得CD、OD的值,从而求出点C的坐标. (2)将A、C的坐标代入抛物线的解析式中,通过联立方程组即可求出待定系数的值,从而确定该抛物线的解析式. (3)根据(2)所得抛物线的解析式可得到其顶点的坐标(即C点),设直线MP与x轴的交点为N,且PN=t,在Rt△OPN中,根据∠PON的度数,易得PN、ON的长,即可得到点P的坐标,然后根据点P的横坐标和抛物线的解析式可求得M点的纵坐标,过M作ME⊥CD(即抛物线对称轴)于E,过P作PQ⊥CD于Q,若四边形CDPM是等腰梯形,那么CE=QD,根据C、M、P、D四点纵坐标,易求得CE、QD的长,联立两式即可求出此时t的值,从而求得点P的坐标. 【解析】 (1)过点C作CH⊥x轴,垂足为H; ∵在Rt△OAB中,∠OAB=90°,∠BOA=30°,AB=2, ∴OB=4,OA=2; 由折叠的性质知:∠COB=30°,OC=AO=2, ∴∠COH=60°,OH=,CH=3; ∴C点坐标为(,3). (2)∵抛物线y=ax2+bx(a≠0)经过C(,3)、A(2,0)两点, ∴, 解得; ∴此抛物线的函数关系式为:y=-x2+2x. (3)存在. ∵y=-x2+2x的顶点坐标为(,3), 即为点C,MP⊥x轴,垂足为N,设PN=t; ∵∠BOA=30°, ∴ON=t, ∴P(t,t); 作PQ⊥CD,垂足为Q,ME⊥CD,垂足为E; 把x=t代入y=-x2+2x, 得y=-3t2+6t, ∴M(t,-3t2+6t),E(,-3t2+6t), 同理:Q(,t),D(,1); 要使四边形CDPM为等腰梯形,只需CE=QD, 即3-(-3t2+6t)=t-1, 解得t=,t=1(舍), ∴P点坐标为(,), ∴存在满足条件的P点,使得四边形CDPM为等腰梯形,此时P点坐标为(,).
复制答案
考点分析:
相关试题推荐
已知:如图,⊙O中,直径AB=5,在它的不同侧有定点C和动点P,BC:CA=4:3,点P在manfen5.com 满分网上运动(点P不与A、B重合),CP交AB于点D,过点C作CP的垂线,与PB的延长线交于点Q.
(1)当点P与点C关于AB对称时,求CD和CQ的长;
(2)当点P运动到什么位置时,CQ取到最大值?求此时CQ的长.

manfen5.com 满分网 查看答案
2008年8月,北京奥运会帆船比赛将在青岛国际帆船中心举行.观看帆船比赛的船票分为两种:A种船票600元/张,B种船票120元/张.某旅行社要为一个旅行团代购部分船票,在购票费不超过5000元的情况下,购买A,B两种船票共15张,要求A种船票的数量不少于B种船票数量的一半.若设购买A种船票x张,请你解答下列问题:
(1)共有几种符合题意的购票方案写出解答过程;
(2)根据计算判断:哪种购票方案更省钱?
查看答案
如图,已知点D在△ABC的BC边上,DE∥AC交AB于E,DF∥AB交AC于F.
(1)求证:AE=DF;
(2)若AD平分∠BAC,试判断四边形AEDF的形状,并说明理由.

manfen5.com 满分网 查看答案
如图是小明设计两个可以自由转动的转盘,甲转盘被等分成3个扇形,乙转盘被等分成4个扇形,每个扇形上都标有相应的数字.小亮和小颖利用它们做游戏,游戏规则是:同时转动两个转盘,当转盘停止后,指针所指区域内的数字之和小于10,小颖获胜;指针所指区域内的数字之和等于10,为平局;指针所指区域内的数字之和大于10,小亮获胜.如果指针恰好指在分割线上,那么重转一次,直到指针指向一个数字为止.
(1)转动转盘甲,转盘停止后,指针指向偶数的概率是______
(2)在此游戏中,小颖获胜的概率是______
(3)你认为该游戏是否公平?若游戏规则公平,请说明理由;若游戏规则不公平,如果让你修改小明的方案,你认为应该从哪个方面入手(不用另外设计方案,只说明修改要点).

manfen5.com 满分网 查看答案
解方程:manfen5.com 满分网
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.