如图,已知抛物线与x轴交于A(-1,0),B(3,0)两点,与y轴交于点C(0,3).
(1)求抛物线的解析式;
(2)设抛物线的顶点为D,在其对称轴的右侧的抛物线上是否存在点P,使得△PDC是等腰三角形?若存在,求出符合条件的点P的坐标;若不存在,请说明理由;
(3)点M是抛物线上一点,以B,C,D,M为顶点的四边形是直角梯形,试求出点M的坐标.
考点分析:
相关试题推荐
某商场经销甲、乙两种商品,甲种商品每件进价15元,售价20元;乙种商品每件进价35元,售价45元.
打折前一次性购物总金额 | 优惠措施 |
不超过300元 | 不优惠 |
超过300元且不超过400元 | 售价打九折 |
超过400元 | 售价打八折 |
(1)若该商场同时购进甲、乙两种商品共100件恰好用去2700元,求能购进甲、乙两种商品各多少件?
(2)该商场为使甲、乙两种商品共100件的总利润(利润=售价-进价)不少于750元,且不超过760元,请你帮助该商场设计相应的进货方案;
(3)在“五•一”黄金周期间,该商场对甲、乙两种商品进行如下优惠促销的活动.
按上述优惠条件,若小王第一天只购买甲种商品一次性付款200元,第二天只购买乙种商品打折的一次性付款324元,那么这两天他在该商场购买甲、乙两种商品一共多少件?(通过计算求出所有符合要求的结果)
查看答案
如图,在▱ABCD中,E,F分别为边AB,CD的中点,连接DE、BF、BD.
(1)求证:△ADE≌△CBF.
(2)若AD⊥BD,则四边形BFDE是什么特殊四边形?请证明你的结论.
查看答案
某城区举行“八荣八耻”演讲比赛,中学组根据初赛成绩在七,八年级分别选出10名同学参加决赛,这些选手的决赛成绩如图所示:
根据图和下表提供的信息,解答下列问题:
(1)请你把右边的表格填写完整;
(2)考虑平均数与方差,你认为哪年级的团体成绩更好些;
(3)假设在每个年级的决赛选手中分别选出3人参加总决赛,你认为哪个年级的实力更强一些,请说明理由.
成绩统计 | 众数 | 平均数 | 方差 |
七年级 | | 85.7 | 39.61 |
八年级 | | 85.7 | 27.81 |
查看答案
一不透明纸箱中装有形状,大小,质地等完全相同的4个小球,分别标有数字1,2,3,4.
(1)从纸箱中随机地一次取出两个小球,求这两个小球上所标的数字一个是奇数另一个是偶数的概率;
(2)先从纸箱中随机地取出一个小球,用小球上所标的数字作为十位上的数字;将取出的小球放回后,再随机地取出一个小球,用小球上所标的数字作为个位上的数字,则组成的两位数恰好能被3整除的概率是多少?试用树状图或列表法加以说明.
查看答案
已知一次函数y=kx+b的图象过点A(0,1)和点B(a,-3a)(a<0),且与反比例函数y=-
的图象交于B,C两点.
(1)求a的值和一次函数的解析式;
(2)求△BOC的面积;
(3)根据图象,直接写出当x为何值时,使得一次函数的值小于反比例函数的值.
查看答案