满分5 > 初中数学试题 >

如图,点A在抛物线y=x2上,过点A作与x轴平行的直线交抛物线于点B,延长AO,...

如图,点A在抛物线y=manfen5.com 满分网x2上,过点A作与x轴平行的直线交抛物线于点B,延长AO,BO分别与抛物线y=-manfen5.com 满分网x2相交于点C,D,连接AD,BC,设点A的横坐标为m,且m>0.
(1)当m=1时,求点A,B,D的坐标;
(2)当m为何值时,四边形ABCD的两条对角线互相垂直;
(3)猜想线段AB与CD之间的数量关系,并证明你的结论.

manfen5.com 满分网
(1)根据题意得点A的坐标是将x=1代入即可,根据对称性可得点B的坐标,即可得OB的解析式,与二次函数的解析式组成方程组即可求得点D的坐标; (2)当四边形ABCD的两对角线互相垂直时,由对称性得直线AO与x轴的夹角等于45°所以点A的纵、横坐标相等,根据点A在二次函数y=x2上,即可求得m的值; (3)根据题意求得点A,B的坐标,求得AC的长与BD的解析式,即可求得点D与C的坐标,求得CD的长,可得CD=2AB. 【解析】 (1)∵点A在抛物线y=x2上,且x=m=1, ∴A(1,),(1分) ∵点B与点A关于y轴对称, ∴B(-1,).(2分) 设直线BD的解析式为y=kx, ∴k=-, ∴y=-x.(3分) 解方程组, 得D(2,-).(4分) (2)当四边形ABCD的两对角线互相垂直时, 由对称性得直线AO与x轴的夹角等于45° 所以点A的纵、横坐标相等,(5分) 这时, 设A(a,a),代入y=x2, 得a=4, ∴A(4,4), ∴m=4. 即当m=4时,四边形ABCD的两条对角线互相垂直.(7分) (3)线段CD=2AB.(8分) 证明:∵点A在抛物线y=x2,且x=m, ∴A(m,m2), 得直线AO的解析式为y=x, 解方程组, 得点C(-2m,-)(9分) 由对称性得点B(-m,m2),D(2m,-m2),(10分) ∴AB=2m,CD=4m, ∴CD=2AB.(11分)
复制答案
考点分析:
相关试题推荐
随着世界气候大会于2009年12月7-18日在丹麦首都哥本哈根的召开,“低碳”概念风靡全球.在“低碳”理念的引领下,某市为实现森林城市建设的目标,在今年春季的绿化工作中,绿化办计划为某住宅小区购买并种植400株树苗,某树苗公司提供如下信息:
信息一:可供选择的树苗有雪松、香樟,垂柳三种,并且要求购买雪松、香樟的数量相等.
信息二:如下表:
树苗每株树苗批发价格(元)两年后每株树苗对空气的净化指数
雪松300.4
香樟200.1
垂柳p0.2
设购买雪松,垂柳分别为x株、y株.
(1)写出y与x之间的函数关系式(不要求写出自变量的取值范围);
(2)当每株垂柳的批发价P等于30元时,要使这400株树苗两年后对该住宅小区的空气净化指数不低于90,应怎样安排这三种树苗的购买数量,才能使购买树苗的总费用最低?最低的总费用是多少元?
(3)当每株垂柳批发价格P(元)与购买数量y(株)之间存在关系P=30-0.05y时,求购买树苗的总费用W(元)与购买雪松数量x(株)之间的函数关系式(不要求写出自变量的取值范围),并求出购买树苗总费用的最大值.
查看答案
如图,直线EF交⊙O于A、B两点,AC是⊙O直径,DE是⊙O的切线,且DE⊥EF,垂足为E.
(1)求证:AD平分∠CAE;
(2)若DE=4cm,AE=2cm,求⊙O的半径.

manfen5.com 满分网 查看答案
供电局的电力维修工甲、乙两人要到45千米远的A地进行电力抢修.甲骑摩托车先行,t(t≥0)小时后乙开抢修车载着所需材料出发.
(1)若t=manfen5.com 满分网(小时),抢修车的速度是摩托车的1.5倍,且甲、乙两人同时到达,求摩托车的速度;
(2)若摩托车的速度是45千米/小时,抢修车的速度是60千米/小时,且乙不能比甲晚到则t的最大值是多少?
查看答案
岳麓山风景名胜区系国家级重点风景名胜区,位于古城长沙湘江西岸.它的主峰海拔约为300米,主峰AB上建有一座电信信号发射架BC,现在山脚p处测得峰顶的仰角为a,发射架顶端的仰角为β,其中manfen5.com 满分网,求发射架高BC.

manfen5.com 满分网 查看答案
在电视台举行的“超级女生”比赛中,甲、乙、丙三位评委对选手的综合表现,分别给出“待定”或“通过”的结论.
(1)写出三位评委给出A选手的所有可能的结论;
(2)对于选手A,只有甲、乙两位评委给出相同结论的概率是多少?
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.