满分5 > 初中数学试题 >

如图,设抛物线C1:y=a(x+1)2-5,C2:y=-a(x-1)2+5,C1...

如图,设抛物线C1:y=a(x+1)2-5,C2:y=-a(x-1)2+5,C1与C2的交点为A,B,点A的坐标是(2,4),点B的横坐标是-2.
(1)求a的值及点B的坐标;
(2)点D在线段AB上,过D作x轴的垂线,垂足为点H,在DH的右侧作正三角形DHG.记过C2顶点M的直线为l,且l与x轴交于点N.
①若l过△DHG的顶点G,点D的坐标为(1,2),求点N的横坐标;
②若l与△DHG的边DG相交,求点N的横坐标的取值范围.

manfen5.com 满分网
(1)由于两个抛物线同时经过A、B两点,将A点坐标代入两个抛物线中,即可求得待定系数的值,进而可求出B点的坐标. (2)①已知了点D的坐标,即可求得正△DGH的边长,过G作GE⊥DH于E,易求得DE、EH、EG的长;根据(1)题所求得的C2的解析式,即可求出点M的坐标,也就能得到ME、MH的长,易证△MEG∽△MHN,根据相似三角形所得比例线段,即可求得N点的横坐标. ②求点N横坐标的取值范围,需考虑N点横坐标最大、最小两种情况: ①当点D、A重合,且直线l经过点G时,N点的横坐标最大;解法可参照(2)的思路,过点G作GQ⊥x轴于Q,过点M作MF⊥x轴于F,设出点N的横坐标,然后分别表示出NQ、NF的长,通过证△NQG∽△NFM,根据所得比例线段,即可求得此时N点的横坐标; ②当点D、B重合,直线l过点D时,N点的横坐标最小,解法同①. 【解析】 (1)∵点A(2,4)在抛物线C1上, ∴把点A坐标代入y=a(x+1)2-5得a=1, ∴抛物线C1的解析式为y=x2+2x-4, 设B(-2,b), ∴b=-4, ∴B(-2,-4); (2)①如图 ∵M(1,5),D(1,2),且DH⊥x轴, ∴点M在DH上,MH=5, 过点G作GE⊥DH,垂足为E, 由△DHG是正三角形,可得EG=,EH=1, ∴ME=4, 设N(x,0),则NH=x-1, 由△MEG∽△MHN,得, ∴, ∴x=, ∴点N的横坐标为; ②当点D移到与点A重合时,如图, 直线l与DG交于点G,此时点N的横坐标最大; 过点G,M作x轴的垂线,垂足分别为点Q,F, 设N(x,0), ∵A(2,4),即AH=4,且△AGH为等边三角形, ∴∠AHG=60°,HG=AH=4, ∴∠GHQ=30°,又∠GQH=90°, ∴GQ=HG=2,HQ==2, ∴OQ=OH+HQ=2+2, ∴G(,2), ∴NQ=,NF=x-1,GQ=2,MF=5, ∵△NGQ∽△NMF, ∴, ∴, ∴, 当点D移到与点B重合时,如图: 直线l与DG交于点D,即点B, 此时点N的横坐标最小; ∵B(-2,-4), ∴H(-2,0),D(-2,-4), 设N(x,0), ∵△BHN∽△MFN, ∴, ∴, ∴, ∴点N横坐标的范围为≤x≤且x≠0.
复制答案
考点分析:
相关试题推荐
如图,已知⊙O的半径为1,PQ是⊙O的直径,n个相同的正三角形沿PQ排成一列,所有正三角形都关于PQ对称,其中第一个△A1B1C1的顶点A1与点P重合,第二个△A2B2C2的顶点A2是B1C1与PQ的交点,…,最后一个△AnBnCn的顶点Bn、Cn在圆上.
manfen5.com 满分网manfen5.com 满分网
(1)如图1,当n=1时,求正三角形的边长a1
(2)如图2,当n=2时,求正三角形的边长a2
(3)如题图,求正三角形的边长an(用含n的代数式表示)
查看答案
如图1,在△ABC中,点P为BC边中点,直线a绕顶点A旋转,若点B,P在直线a的异侧,BM⊥直线a于点M.CN⊥直线a于点N,连接PM,PN.
(1)延长MP交CN于点E(如图2).
①求证:△BPM≌△CPE;
②求证:PM=PN;
(2)若直线a绕点A旋转到图3的位置时,点B,P在直线a的同侧,其它条件不变,此时PM=PN还成立吗?若成立,请给予证明;若不成立,请说明理由;
(3)若直线a绕点A旋转到与BC边平行的位置时,其它条件不变,请直接判断四边形MBCN的形状及此时PM=PN还成立吗?不必说明理由.
manfen5.com 满分网manfen5.com 满分网
查看答案
关于三角函数有如下的公式:
sin(α+β)=sinαcosβ+cosαsinβ①
cos(α+β)=cosαcosβ-sinαsinβ②
tan(α+β)=manfen5.com 满分网
利用这些公式可将某些不是特殊角的三角函数转化为特殊角的三角函数来求值,如:
tan105°=tan(45°+60°)=manfen5.com 满分网=manfen5.com 满分网=manfen5.com 满分网=-(2+manfen5.com 满分网).
根据上面的知识,你可以选择适当的公式解决下面的实际问题:
如图,直升飞机在一建筑物CD上方A点处测得建筑物顶端D点的俯角α=60°,底端C点的俯角β=75°,此时直升飞机与建筑物CD的水平距离BC为42m,求建筑物CD的高.

manfen5.com 满分网 查看答案
先化简:再求值:manfen5.com 满分网÷(a+manfen5.com 满分网),其中a=manfen5.com 满分网-1,b=1.
查看答案
某花农培育甲种花木2株,乙种花木3株,共需成本1700元;培育甲种花木3株,乙种花木1株,共需成本1500元.
(1)求甲、乙两种花木每株成本分别为多少元?
(2)据市场调研,1株甲种花木售价为760元,1株乙种花木售价为540元.该花农决定在成本不超过30000元的前提下培育甲乙两种花木,若培育乙种花木的株数是甲种花木的3倍还多10株,那么要使总利润不少于21 600元,花农有哪几种具体的培育方案?
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.