满分5 > 初中数学试题 >

如图,在边长为4的正方形ABCD中,点P在AB上从A向B运动,连接DP交AC于点...

如图,在边长为4的正方形ABCD中,点P在AB上从A向B运动,连接DP交AC于点Q.
(1)试证明:无论点P运动到AB上何处时,都有△ADQ≌△ABQ;
(2)当点P在AB上运动到什么位置时,△ADQ的面积是正方形ABCD面积的manfen5.com 满分网
(3)若点P从点A运动到点B,再继续在BC上运动到点C,在整个运动过程中,当点P运动到什么位置时,△ADQ恰为等腰三角形.

manfen5.com 满分网
(1)可由SAS求得△ADQ≌△ABQ; (2)过点Q作QE⊥AD于E,QF⊥AB于F,则QE=QF,若△ADQ的面积是正方形ABCD面积的,则有S△ADQ=AD•QE=S正方形ABCD,求得OE的值,再利用△DEQ∽△DAP有解得AP值; (3)点P运动时,△ADQ恰为等腰三角形的情况有三种:有QD=QA或DA=DQ或AQ=AD.由正方形的性质知,①当点P运动到与点B重合时,QD=QA,此时△ADQ是等腰三角形,②当点P与点C重合时,点Q与点C也重合,此时DA=DQ,△ADQ是等腰三角形,③当AD=AQ=4时,有CP=CQ,CP=AC-AD而由正方形的对角线的性质得到CP的值. (1)证明:在正方形ABCD中, 无论点P运动到AB上何处时,都有 AD=AB,∠DAQ=∠BAQ,AQ=AQ, ∴△ADQ≌△ABQ; (2)解法一:△ADQ的面积恰好是正方形ABCD面积的时, 过点Q作QE⊥AD于E,QF⊥AB于F,则QE=QF, ∵在边长为4的正方形ABCD中, ∴S正方形ABCD=16, ∴AD×QE=S正方形ABCD=×16=, ∴QE=, ∵EQ∥AP, ∴△DEQ∽△DAP, ∴,即=, 解得AP=2, ∴AP=2时,△ADQ的面积是正方形ABCD面积的; 解法二:以A为原点建立如图所示的直角坐标系,过点Q作QE⊥y轴于点E,QF⊥x轴于点F. AD×QE=S正方形ABCD=×16=, ∴QE=, ∵点Q在正方形对角线AC上, ∴Q点的坐标为(,), ∴过点D(0,4),Q(,)两点的函数关系式为:y=-2x+4, 当y=0时,x=2, ∴P点的坐标为(2,0), ∴AP=2时,即当点P运动到AB中点位置时,△ADQ的面积是正方形ABCD面积的; (3)【解析】 若△ADQ是等腰三角形,则有QD=QA或DA=DQ或AQ=AD, ①当AD=DQ时,则∠DQA=∠DAQ=45° ∴∠ADQ=90°,P为C点, ②当AQ=DQ时,则∠DAQ=∠ADQ=45°, ∴∠AQD=90°,P为B, ③AD=AQ(P在BC上), ∴CQ=AC-AQ=BC-BC=(-1)BC ∵AD∥BC ∴=,即可得==1, ∴CP=CQ=(-1)BC=4(-1) 综上,P在B点,C点,或在CP=4(-1)处,△ADQ是等腰三角形.
复制答案
考点分析:
相关试题推荐
如图,在直角坐标系xOy中,直线manfen5.com 满分网与x轴,y轴分别交于A,B两点,以AB为边在第二象限内作矩形(1,-4),使manfen5.com 满分网
(1)求点A,点B的坐标,并求边AB的长;
(2)过点D作DH⊥x轴,垂足为H,求证:△ADH∽△BAO;
(3)求点D的坐标.

manfen5.com 满分网 查看答案
manfen5.com 满分网如图,AB为⊙O的直径,点C在⊙O上,过点C作⊙O的切线交AB的延长线于点D,已知∠D=30°.
(1)求∠A的度数;
(2)若点F在⊙O上,CF⊥AB,垂足为E,CF=manfen5.com 满分网,求图中阴影部分的面积.
查看答案
某农户种植一种经济作物,总用水量y(米3)与种植时间x(天)之间的函数关系式如图所示.
(1)第20天的总用水量为多少米3
(2)当x≥20时,求y与x之间的函数关系式;
(3)种植时间为多少天时,总用水量达到7000米3

manfen5.com 满分网 查看答案
为了了解某县12000名中学生体育的达标情况,现从七、八、九年级学生中共抽查了1000名学生的体育达标情况作为一个样本,制作了各年级学生人数分布情况、各年级达标人数的两张统计图.
manfen5.com 满分网
(Ⅰ)样本中七年级学生共有______人,七年级学生的体育达标率为______
(Ⅱ)三个年级学生中体育达标率最高的是哪个年级?答:______
(Ⅲ)估计该县体育达标的学生人数有多少人.
查看答案
如图,正方形网格中,△ABC为格点三角形(顶点都是格点),将△ABC绕点A按逆时针方向旋转90°得到△AB1C1
(1)在正方形网格中,作出△AB1C1
(2)设网格小正方形的边长为1,求旋转过程中动点B所经过的路径长.

manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.