满分5 > 初中数学试题 >

如图,已知AB是⊙O的直径,点C在⊙O上,过点C的直线与AB的延长线交于点P,A...

manfen5.com 满分网如图,已知AB是⊙O的直径,点C在⊙O上,过点C的直线与AB的延长线交于点P,AC=PC,∠COB=2∠PCB.
(1)求证:PC是⊙O的切线;
(2)求证:BC=manfen5.com 满分网AB;
(3)点M是manfen5.com 满分网的中点,CM交AB于点N,若AB=4,求MN•MC的值.
(1)已知C在圆上,故只需证明OC与PC垂直即可;根据圆周角定理,易得∠PCB+∠OCB=90°,即OC⊥CP;故PC是⊙O的切线; (2)AB是直径;故只需证明BC与半径相等即可; (3)连接MA,MB,由圆周角定理可得∠ACM=∠BCM,进而可得△MBN∽△MCB,故BM2=MN•MC;代入数据可得MN•MC=BM2=8. (1)证明:∵OA=OC, ∴∠A=∠ACO. 又∵∠COB=2∠A,∠COB=2∠PCB, ∴∠A=∠ACO=∠PCB. 又∵AB是⊙O的直径, ∴∠ACO+∠OCB=90°. ∴∠PCB+∠OCB=90°. 即OC⊥CP, ∵OC是⊙O的半径. ∴PC是⊙O的切线.(3分) (2)证明:∵AC=PC, ∴∠A=∠P, ∴∠A=∠ACO=∠PCB=∠P. 又∵∠COB=∠A+∠ACO,∠CBO=∠P+∠PCB, ∴∠COB=∠CBO, ∴BC=OC. ∴BC=AB.(6分) (3)【解析】 连接MA,MB, ∵点M是的中点, ∴, ∴∠ACM=∠BCM. ∵∠ACM=∠ABM, ∴∠BCM=∠ABM. ∵∠BMN=∠BMC, ∴△MBN∽△MCB. ∴. ∴BM2=MN•MC. 又∵AB是⊙O的直径,, ∴∠AMB=90°,AM=BM. ∵AB=4, ∴BM=2. ∴MN•MC=BM2=8.(10分)
复制答案
考点分析:
相关试题推荐
学习过三角函数,我们知道在直角三角形中,一个锐角的大小与两条边长的比值相互唯一确定,因此边长与角的大小之间可以相互转化.
类似的,可以在等腰三角形中建立边角之间的联系,我们定义:等腰三角形中底边与腰的比叫做顶角的正对(sad).如图,在△ABC中,AB=AC,顶角A的正对记作sadA,这时sad A=manfen5.com 满分网.容易知道一个角的大小与这个角的正对值也是相互唯一确定的.
根据上述对角的正对定义,解下列问题:
(1)sad60°的值为( )A.manfen5.com 满分网  B.1  C.manfen5.com 满分网 D.2
(2)对于0°<A<180°,∠A的正对值sadA的取值范围是______
(3)已知sinα=manfen5.com 满分网,其中α为锐角,试求sadα的值.

manfen5.com 满分网 查看答案
为了“让所有的孩子都能上得起学,都能上好学”,国家自2007年起出台了一系列“资助贫困学生”的政策,其中包括向经济困难的学生免费提供教科书的政策.为确保这项工作顺利实施,学校需要调查学生的家庭情况.以下是某市城郊一所中学甲、乙两个班的调查结果,整理成表(一)和图(一):
类型班级城镇非低保
户口人数
农村户口人数城镇户口
低保人数
总人数
甲班20550
乙班28224
manfen5.com 满分网
(1)将表(一)和图(一)中的空缺部分补全.
(2)现要预定2009年下学期的教科书,全额100元.若农村户口学生可全免,城镇低保的学生可减免manfen5.com 满分网,城镇户口(非低保)学生全额交费.求乙班应交书费多少元?甲班受到国家资助教科书的学生占全班人数的百分比是多少?
(3)五四青年节时,校团委免费赠送给甲、乙两班若干册科普类、文学类及艺术类三种图书,其中文学类图书有15册,三种图书所占比例如图(二)所示,求艺术类图书共有多少册?
查看答案
解不等式组manfen5.com 满分网,并写出不等式组的整数解.
查看答案
先化简,再求值:manfen5.com 满分网+(x-manfen5.com 满分网),其中x=manfen5.com 满分网-2.
查看答案
如图,在矩形ABCD中,AD=5,AB=4,点E、G、H、F分别在AB、BC、CD、AD上,且AF=CG=2,BE=DH=1,点P是直线EF、GH之间任意一点,连接PE、PF、PG、PH,则△PEF和△PGH的面积和等于   
manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.