满分5 > 初中数学试题 >

已知:在⊙O中,AB是直径,AC是弦,OE⊥AC于点E,过点C作直线FC,使∠F...

已知:在⊙O中,AB是直径,AC是弦,OE⊥AC于点E,过点C作直线FC,使∠FCA=∠AOE,交AB的延长线于点D.
(1)求证:FD是⊙O的切线;
(2)设OC与BE相交于点G,若OG=2,求⊙O半径的长;
(3)在(2)的条件下,当OE=3时,求图中阴影部分的面积.

manfen5.com 满分网
(1)要证FD是⊙O的切线只要证明∠OCF=90°即可; (2)根据已知证得△OEG∽△CBG根据相似比不难求得OC的长; (3)根据S阴影=S△OCD-S扇形OBC从而求得阴影的面积. 证明:(1)连接OC(如图①), ∵OA=OC, ∴∠1=∠A. ∵OE⊥AC, ∴∠A+∠AOE=90°. ∴∠1+∠AOE=90°. ∵∠FCA=∠AOE, ∴∠1+∠FCA=90°. 即∠OCF=90°. ∴FD是⊙O的切线. (2)连接BC,(如图②) ∵OE⊥AC, ∴AE=EC(垂径定理). 又∵AO=OB, ∴OE∥BC且. ∴∠OEG=∠GBC(两直线平行,内错角相等), ∠EOG=∠GCB(两直线平行,内错角相等), ∴△OEG∽△CBG(AA). ∴. ∵OG=2, ∴CG=4. ∴OC=OG+GC=2+4=6. 即⊙O半径是6. (3)∵OE=3,由(2)知BC=2OE=6, ∵OB=OC=6, ∴△OBC是等边三角形. ∴∠COB=60°. ∵在Rt△OCD中,CD=OC•tan60°=6, ∴S阴影=S△OCD-S扇形OBC==.
复制答案
考点分析:
相关试题推荐
请阅读下列材料:
我们规定一种运算:manfen5.com 满分网=ad-bc,例如:manfen5.com 满分网=2×5-3×4=10-12=-2.按照这种运算的规定,请解答下列问题:(1)直接写出manfen5.com 满分网的计算结果;
(2)当x取何值时,manfen5.com 满分网=0;
(3)若manfen5.com 满分网=manfen5.com 满分网=-7,直接写出x和y的值.
查看答案
如图,直线l1:y=2x与直线l2:y=kx+3在同一平面直角坐标系内交于点P.
(1)写出不等式2x>kx+3的解集:______
(2)设直线l2与x轴交于点A,求△OAP的面积.

manfen5.com 满分网 查看答案
去年3月12日某校学生参加植树活动,在引江河两岸共栽A、B、C三种不同品种的树苗1500棵.今年植树节前同学们去引江河两岸调查了A、B、C三种品种树苗的成活情况,准备今年从三种品种中选成活率最高的品种进行栽种.经调查,A品种的成活率为90%,C品种的成活率为92%,三种品种的总成活率为92.2%,并把成活的棵数绘制成如下不完整的统计图.
(1)三种品种树苗去年各栽了多少棵?
(2)补全条形统计图,并通过计算说明今年应栽哪种品种的树苗.

manfen5.com 满分网 查看答案
某校把一块沿河的三角形废地(如图)开辟为生物园,已知∠ACB=90°,∠CAB=60°,AB=24米.为便于浇灌,学校在点C处建了一个蓄水池,利用管道从河中取水.已知每铺设1米管道费用为50元,求铺设管道的最低费用(精确到1元).(manfen5.com 满分网≈1.73)manfen5.com 满分网
查看答案
在“五•一”期间,小明、小亮等同学随家长一同到某公园游玩,下面是购买门票时,小明与他爸爸的对话(如图),试根据图中的信息,解答下列问题:
manfen5.com 满分网
(1)小明他们一共去了几个成人,几个学生?
(2)请你帮助小明算一算,用哪种方式购票更省钱?说明理由.
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.