满分5 > 初中数学试题 >

已知:在矩形AOBC中,OB=4,OA=3.分别以OB,OA所在直线为x轴和y轴...

已知:在矩形AOBC中,OB=4,OA=3.分别以OB,OA所在直线为x轴和y轴,建立如图所示的平面直角坐标系.F是边BC上的一个动点(不与B,C重合),过F点的反比例函数manfen5.com 满分网(k>0)的图象与AC边交于点E.
(1)求证:△AOE与△BOF的面积相等;
(2)记S=S△OEF-S△ECF,求当k为何值时,S有最大值,最大值为多少?
(3)请探索:是否存在这样的点F,使得将△CEF沿EF对折后,C点恰好落在OB上?若存在,求出点F的坐标;若不存在,请说明理由.

manfen5.com 满分网
(1)分别用点E,F的坐标表示出△AOE与△FOB的面积,进行比较; (2)应分别用矩形面积和能用图中的点表示出的三角形的面积表示出所求的面积,利用二次函数求出最值即可; (3)点F的横坐标已有,与点B的横坐标相同,利用折叠以及相似求得点F的纵坐标. (1)证明:设E(x1,y1),F(x2,y2),△AOE与△FOB的面积分别为S1,S2, 由题意得y1=,y2=, ∴S1=x1y1=k,S2=x2y2=k, ∴S1=S2, 即△AOE与△FOB的面积相等; (2)【解析】 由题意知E,F两点坐标分别为E(,3),F(4,), ∴S△ECF=EC•CF=(4-k)(3-k), ∴S△EOF=S矩形AOBC-S△AOE-S△BOF-S△ECF =12-k-k-S△ECF =12-k-S△ECF ∴S=S△OEF-S△ECF=12-k-2S△ECF=12-k-2×(4-k)(3-k). ∴S=-k2+k,即S=-(k-6)2+3, 当k=6时,S有最大值. S最大值=3; (3)【解析】 设存在这样的点F,将△CEF沿EF对折后,C点恰好落在OB边上的M点, 过点E作EN⊥OB,垂足为N. 由题意得:EN=AO=3,EM=EC=4-k,MF=CF=3-k, ∵∠EMN+∠FMB=∠FMB+∠MFB=90°, ∴∠EMN=∠MFB. 又∵∠ENM=∠MBF=90°, ∴△EMN∽△MFB. ∴, ∴, ∴MB=. ∵MB2+BF2=MF2, ∴,解得k=. ∴BF=. ∴存在符合条件的点F,它的坐标为(4,).
复制答案
考点分析:
相关试题推荐
已知:在⊙O中,AB是直径,AC是弦,OE⊥AC于点E,过点C作直线FC,使∠FCA=∠AOE,交AB的延长线于点D.
(1)求证:FD是⊙O的切线;
(2)设OC与BE相交于点G,若OG=2,求⊙O半径的长;
(3)在(2)的条件下,当OE=3时,求图中阴影部分的面积.

manfen5.com 满分网 查看答案
请阅读下列材料:
我们规定一种运算:manfen5.com 满分网=ad-bc,例如:manfen5.com 满分网=2×5-3×4=10-12=-2.按照这种运算的规定,请解答下列问题:(1)直接写出manfen5.com 满分网的计算结果;
(2)当x取何值时,manfen5.com 满分网=0;
(3)若manfen5.com 满分网=manfen5.com 满分网=-7,直接写出x和y的值.
查看答案
如图,直线l1:y=2x与直线l2:y=kx+3在同一平面直角坐标系内交于点P.
(1)写出不等式2x>kx+3的解集:______
(2)设直线l2与x轴交于点A,求△OAP的面积.

manfen5.com 满分网 查看答案
去年3月12日某校学生参加植树活动,在引江河两岸共栽A、B、C三种不同品种的树苗1500棵.今年植树节前同学们去引江河两岸调查了A、B、C三种品种树苗的成活情况,准备今年从三种品种中选成活率最高的品种进行栽种.经调查,A品种的成活率为90%,C品种的成活率为92%,三种品种的总成活率为92.2%,并把成活的棵数绘制成如下不完整的统计图.
(1)三种品种树苗去年各栽了多少棵?
(2)补全条形统计图,并通过计算说明今年应栽哪种品种的树苗.

manfen5.com 满分网 查看答案
某校把一块沿河的三角形废地(如图)开辟为生物园,已知∠ACB=90°,∠CAB=60°,AB=24米.为便于浇灌,学校在点C处建了一个蓄水池,利用管道从河中取水.已知每铺设1米管道费用为50元,求铺设管道的最低费用(精确到1元).(manfen5.com 满分网≈1.73)manfen5.com 满分网
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.