满分5 > 初中数学试题 >

两个全等的直角三角形ABC和DEF重叠在一起,其中∠A=60°,AC=1.固定△...

两个全等的直角三角形ABC和DEF重叠在一起,其中∠A=60°,AC=1.固定△ABC不动,将△DEF进行如下操作:
(1)如图,△DEF沿线段AB向右平移(即D点在线段AB内移动),连接DC、CF、FB,四边形CDBF的形状在不断的变化,但它的面积不变化,请求出其面积.
manfen5.com 满分网
(2)如图,当D点移到AB的中点时,请你猜想四边形CDBF的形状,并说明理由.
manfen5.com 满分网
(3)如图,△DEF的D点固定在AB的中点,然后绕D点按顺时针方向旋转△DEF,使DF落在AB边上,此时F点恰好与B点重合,连接AE,请你求出sinα的值.
manfen5.com 满分网
(1)根据平移的性质得到AD=BE,再结合两条平行线间的距离相等,则三角形ACD的面积等于三角形BEF的面积,所以要求的梯形的面积等于三角形ABC的面积.根据60度的直角三角形ABC中AC=1,即可求得BC的长,从而求得其面积; (2)根据直角三角形斜边上的中线等于斜边的一半和平移的性质,即可得到该四边形的四条边都相等,则它是一个菱形; (3)过D点作DH⊥AE于H,可以把要求的角构造到直角三角形中,根据三角形ADE的面积的不同计算方法,可以求得DH的长,进而求解. 【解析】 (1)在Rt△ABC中, ∵∠A=60°,AC=1, ∴BC=, ∴S梯形CDBF=S△ABC=; (2)菱形. ∵在直角三角形ABC中,AD=BD, ∴CD=AD=BD, 根据平移的性质得到CF=BD,BF=CD, ∴CF=BD=BF=CD, ∴四边形CDBF是菱形; (3)过D点作DH⊥AE于H,则S△ADE=•1•=, 又S△ADE=AE•DH=, DH==, ∴在Rt△DHE′中,sinα==.
复制答案
考点分析:
相关试题推荐
如图,直线l1:y=kx+b平行于直线y=x-1,且与直线l2manfen5.com 满分网相交于点P(-1,0).
(1)求直线l1、l2的解析式;
(2)直线l1与y轴交于点A.一动点C从点A出发,先沿平行于x轴的方向运动,到达直线l2上的点B1处后,改为垂直于x轴的方向运动,到达直线l1上的点A1处后,再沿平行于x轴的方向运动,到达直线l2上的点B2处后,又改为垂直于x轴的方向运动,到达直线l1上的点A2处后,仍沿平行于x轴的方向运动,…
照此规律运动,动点C依次经过点B1,A1,B2,A2,B3,A3,…,Bn,An,…
①求点B1,B2,A1,A2的坐标;
②请你通过归纳得出点An、Bn的坐标;并求当动点C到达An处时,运动的总路径的长?

manfen5.com 满分网 查看答案
某商场设立了一个可以自由转动的转盘,并规定:顾客购物10元以上就能获得一次转动转盘的机会,当转盘停止时,指针落在哪一区域就可以获得相应的奖品.下表是活动进行中的一组统计数据:
(1)计算并完成表格:
转动转盘的次数n1001502005008001000
落在“铅笔”的次数m68111136345564701
落在“铅笔”的频率manfen5.com 满分网
(2)请估计,当n很大时,频率将会接近多少?
(3)假如你去转动该转盘一次,你获得铅笔的概率约是多少?
(4)在该转盘中,表示“铅笔”区域的扇形的圆心角约是多少?(精确到1°)

manfen5.com 满分网 查看答案
在“五•一”期间,小明、小亮等同学随家长一同到某公园游玩,下面是购买门票时,小明与他爸爸的对话(如图),试根据图中的信息,解答下列问题:
manfen5.com 满分网
(1)小明他们一共去了几个成人,几个学生?
(2)请你帮助小明算一算,用哪种方式购票更省钱?说明理由.
查看答案
先化简,再求值:manfen5.com 满分网,其中m=-2.
查看答案
如图,E是▱ABCD的边BA延长线上一点,连接EC,交AD于F.在不添加辅助线的情况下,请找出图中的一对相似三角形,并说明理由.

manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.