满分5 > 初中数学试题 >

如图,在平面直角坐标系中,已知点A(0,2),点P是x轴上一动点,以线段AP为一...

如图,在平面直角坐标系中,已知点A(0,2),点P是x轴上一动点,以线段AP为一边,在其一侧作等边三角形APQ.当点P运动到原点O处时,记Q的位置为B.
(1)求点B的坐标;
(2)求证:当点P在x轴上运动(P不与O重合)时,∠ABQ为定值;
(3)是否存在点P,使得以A、O、Q、B为顶点的四边形是梯形?若存在,请求出P点的坐标;若不存在,请说明理由.

manfen5.com 满分网
(1)根据题意作辅助线过点B作BC⊥y轴于点C,根据等边三角形的性质即可求出点B的坐标, (2)根据∠PAQ=∠OAB=60°,可知∠PAO=∠QAB,得出△APO≌△AQB总成立,得出当点P在x轴上运动(P不与Q重合)时,∠ABQ为定值90°, (3)根据点P在x的正半轴还是负半轴两种情况讨论,再根据全等三角形的性质即可得出结果. (1)【解析】 过点B作BC⊥y轴于点C, ∵A(0,2),△AOB为等边三角形, ∴AB=OB=2,∠BAO=60°, ∴BC=,OC=AC=1, 即B(); (2)证明:当点P在x轴上运动(P不与O重合)时,不失一般性, ∵∠PAQ=∠OAB=60°, ∴∠PAO=∠QAB, 在△APO和△AQB中, ∵AP=AQ,∠PAO=∠QAB,AO=AB ∴△APO≌△AQB总成立, ∴∠ABQ=∠AOP=90°总成立, ∴当点P在x轴上运动(P不与O重合)时,∠ABQ为定值90°; (3)【解析】 由(2)可知,点Q总在过点B且与AB垂直的直线上,可见AO与BQ不平行. ①当点P在x轴负半轴上时,点Q在点B的下方, 此时,若AB∥OQ,四边形AOQB即是梯形, 当AB∥OQ时,∠BQO=90°,∠BOQ=∠ABO=60°. 又OB=OA=2,可求得BQ=, 由(2)可知,△APO≌△AQB, ∴OP=BQ=, ∴此时P的坐标为(). ②当点P在x轴正半轴上时,点Q在B的上方, 此时,若AQ∥OB,四边形AOBQ即是梯形, 当AQ∥OB时,∠ABQ=90°,∠QAB=∠ABO=60°. 又AB=2,可求得BQ=, 由(2)可知,△APO≌△AQB, ∴OP=BQ=, ∴此时P的坐标为(). 综上,P的坐标为()或().
复制答案
考点分析:
相关试题推荐
使得函数值为零的自变量的值称为函数的零点.例如,对于函数y=x-1,令y=0,可得x=1,我们就说1是函数y=x-1的零点.
己知函数y=x2-2mx-2(m+3)(m为常数).
(1)当m=0时,求该函数的零点;
(2)证明:无论m取何值,该函数总有两个零点;
(3)设函数的两个零点分别为x1和x2,且manfen5.com 满分网,此时函数图象与x轴的交点分别为A、B(点A在点B左侧),点M在直线y=x-10上,当MA+MB最小时,求直线AM的函数解析式.
查看答案
用洗衣粉洗衣物时,漂洗的次数与衣物中洗衣粉的残留量近似地满足反比例函数关系.寄宿生小红、小敏晚饭后用同一种洗衣粉各自洗一件同样的衣服,漂洗时,小红每次用一盆水(约10升),小敏每次用半盆水(约5升),如果她们都用了5克洗衣粉,第一次漂洗后,小红的衣服中残留的洗衣粉还有1.5克,小敏的衣服中残留的洗衣粉还有2克.
(1)请帮助小红、小敏求出各自衣服中洗衣粉的残留量y与漂洗次数x的函数关系式;
(2)当洗衣粉的残留量降至0.5克时,便视为衣服漂洗干净,从节约用水的角度来看,你认为谁的漂洗方法值得提倡,为什么?
查看答案
如图,AB为⊙O的直径,BC为⊙O的切线,AC交⊙O于点E,D为AC上一点,∠AOD=∠C.
(1)求证:OD⊥AC;
(2)若AE=8,manfen5.com 满分网,求OD的长.

manfen5.com 满分网 查看答案
manfen5.com 满分网我国网球名将李娜在今年法国网球公开赛上的出色表现,大大激发了国人对网球的热情.在一项“你最喜欢的球类运动”的调查中,共有50名同学参与调查,每人必选且只选一项,将调查结果绘制成频数分布直方图如下,根据图中信息回答:
(1)被调查的同学中选择喜欢网球的有______人;
(2)孔明同学在被调查中选择的是羽毛球,现要在参与调查选择喜欢羽毛球的同学中随机抽取2人参加一项比赛,求孔明被选中的概率.
查看答案
先化简:(manfen5.com 满分网)÷manfen5.com 满分网.再从1,2,3中选一个你认为合适的数作为a的值代入求值.
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.