满分5 >
初中数学试题 >
甲、乙两盒中分别放入编号为1,2,3,4的形状相同的4个小球,从甲盒中任意摸出一...
甲、乙两盒中分别放入编号为1,2,3,4的形状相同的4个小球,从甲盒中任意摸出一球,再从乙盒中任意摸出一球,将两球编号数相加得到一个数,则得到数( )的概率最大.
A.3
B.4
C.5
D.6
考点分析:
相关试题推荐
函数
的自变量取值范围是( )
A.x>-2
B.x<-2
C.x≥-2
D.x≠-2
查看答案
计算(a
2)
3的结果是( )
A.a
5B.a
6C.a
8D.3a
2
查看答案
光年是天文学中的距离单位.1光年约是9 500 000 000 000km,用科学记数法可表示为( )
A.950×10
10km
B.95×10
11km
C.9.5×10
12km
D.0.95×10
13km
查看答案
已知:在平面直角坐标系中,抛物线y=ax
2-x+3(a≠0)交x轴于A、B两点,交y轴于点C,且对称轴为直线x=-2.
(1)求该抛物线的解析式及顶点D的坐标;
(2)若点P(0,t)是y轴上的一个动点,请进行如下探究:
探究一:如图1,设△PAD的面积为S,令W=t•S,当0<t<4时,W是否有最大值?如果有,求出W的最大值和此时t的值;如果没有,说明理由;
探究二:如图2,是否存在以P、A、D为顶点的三角形与Rt△AOC相似?如果存在,求点P的坐标;如果不存在,请说明理由.(参考资料:抛物线y=ax
2+bx+c(a≠0)对称轴是直线x=
)
查看答案
有两张完全重合的矩形纸片,小亮同学将其中一张绕点A顺时针旋转90°后得到矩形AMEF(如图1),连接BD、MF,若此时他测得BD=8cm,∠ADB=30度.
(1)试探究线段BD与线段MF的关系,并简要说明理由;
(2)小红同学用剪刀将△BCD与△MEF剪去,与小亮同学继续探究.他们将△ABD绕点A顺时针旋转得△AB
1D
1,AD
1交FM于点K(如图2),设旋转角为β(0°<β<90°),当△AFK为等腰三角形时,请直接写出旋转角β的度数;
(3)若将△AFM沿AB方向平移得到△A
2F
2M
2(如图3),F
2M
2与AD交于点P,A
2M
2与BD交于点N,当NP∥AB时,求平移的距离是多少?
查看答案