满分5 >
初中数学试题 >
下列实数中,是无理数的为( ) A.3.14 B. C. D.
下列实数中,是无理数的为( )
A.3.14
B.
C.
D.
考点分析:
相关试题推荐
已知抛物线y=x
2与动直线y=(2t-1)x-c有公共点(x
1,y
1),(x
2,y
2),且x
12+x
22=t
2+2t-3.
(1)求实数t的取值范围;
(2)当t为何值时,c取到最小值,并求出c的最小值.
查看答案
已知:如图所示,直线l的解析式为y=
x-3,并且与x轴、y轴分别相交于点A、B.
(1)求A、B两点的坐标;
(2)一个圆心在坐标原点、半径为1的圆,以0.4个单位/每秒的速度向x轴正方向运动,问什么时刻该圆与直线l相切;
(3)在题(2)中,若在圆开始运动的同时,一动点P从B点出发,沿BA方向以0.5个单位/秒的速度运动,问在整个运动的过程中,点P在动圆的园面(圆上和圆的内部)上一共运动了多长时间?
查看答案
如图,将一块直角三角形纸板的直角顶点放在C(1,
)处,两直角边分别与x,y轴平行,纸板的另两个顶点A,B恰好是直线y=kx+
与双曲线y=
(m>0)的交点.
(1)求m和k的值;
(2)设双曲线y=
(m>0)在A,B之间的部分为L,让一把三角尺的直角顶点P在L上滑动,两直角边始终与坐标轴平行,且与线段AB交于M,N两点,请探究是否存在点P使得MN=
AB,写出你的探究过程和结论.
查看答案
我国古代数学家秦九韶在《数书九章》中记述了“三斜求积术”,即已知三角形的三边长,求它的面积.用现代式子表示即为:
…①(其中a、b、c为三角形的三边长,s为面积).
而另一个文明古国古希腊也有求三角形面积的海伦公式:
s=
…②(其中p=
.)
(1)若已知三角形的三边长分别为5,7,8,试分别运用公式①和公式②,计算该三角形的面积s;
(2)你能否由公式①推导出公式②?请试试.
查看答案
若函数y=kx
2+2(k+1)x+k-1与x轴只有一个交点,求k的值.
查看答案