满分5 > 初中数学试题 >

如图,四边形OABC为直角梯形,OA⊥CO,CB∥OA,OA=CO=4,BC=3...

如图,四边形OABC为直角梯形,OA⊥CO,CB∥OA,OA=CO=4,BC=3.点M从O出发以每秒2个单位长度的速度向A运动;点N从B同时出发,以每秒1个单位长度的速度向C运动.其中一个动点到达终点时,另一个动点也随之停止运动.过点N作NP⊥AO于点P,连接AC交NP于Q,连接MQ、BQ.
(1)求△AQM的面积S与运动时间t的函数关系式;
(2)当t为何值时,S△BCQ:S△AQM=3:2?
(3)是否存在某一时刻t,使得△AQM为直角三角形?若存在,求出相应的t值,若不存在,说明理由.

manfen5.com 满分网
(1)经过t秒时可得NB=y,OM-2t.根据∠BCA=∠MAQ=45°推出QN=CN,PQ的值.再根据三角形面积公式求出S与t的函数关系式. (2)用含t的式子先表示出S△BCQ,S△AQM,然后根据两者之比为3:2可得出t的值. (3)本题分两种情况讨论(若∠AQM=90°,PQ是等腰Rt△MQA底边MA上的高;若∠QMA=90°,QM与QP重合)求出t值. 【解析】 (1)经过t秒时,NB=t,OM=2t, 则CN=3-t,AM=4-2t, ∵∠BCA=∠MAQ=45°, ∴QN=CN=3-t, ∴PQ=1+t, ∴S△AMQ=AM•PQ=(4-2t)(1+t)=-t2+t+2. (2)由题意得,CN=NQ=3-t,QP=1+t,AM=4-2t, ∴S△BCQ=×3(3-t),S△AQM=(4-2t)(1+t), 又∵S△BCQ:S△AQM=3:2,即3(3-t):(4-2t)(1+t)=3:2, 解得:t=1, 即当t=1时,S△BCQ:S△AQM=3:2. (3)存在. 设经过t秒时,NB=t,OM=2t, 则CN=3-t,AM=4-2t, ∴∠BCA=∠MAQ=45°, ①若∠AQM=90°,则PQ是等腰Rt△MQA底边MA上的高, ∴PQ是底边MA的中线, ∴PQ=AP=MA, ∴1+t=(4-2t), 解得:t=. ②若∠QMA=90°,此时QM与QP重合, ∴QM=QP=MA, ∴1+t=4-2t ∴t=1.
复制答案
考点分析:
相关试题推荐
【老题重现】
求证:等腰三角形底边上任意一点到两腰的距离和等于一腰上的高.
已知:△ABC中,AB=AC,点P是BC边上任意一点,PE⊥AB于E,PF⊥AC于F,CD是AB边上的高线.
求证:PE+PF=CD
证明:连接AP,
∵S△ABP+S△ACP=S△ABC
manfen5.com 满分网
∵AB=AC
∴PE+PF=CD

【变式应用】
请利用“类比”和“化归”两种方法解答下面问题:
求证:等边三角形内上任意一点到三边的距离和等于一边上的高.
已知:点P是等边△ABC内任意一点,PD⊥BC于D,PE⊥AC于E,PF⊥AB于F,AH是BC边上的高线.
求证:PD+PE+PF=AH
证明:
方法(一)类比:通过类比上题的思路和方法,模仿上题的“面积法”解决本题.
连接AP,BP,CP
方法(二)化归:如图,通过MN在等边△ABC中构造符合“老题”规律的等边△AMN,化“新题”为“老题”,直接利用“老题重现”的结论解决问题.
过点P作MN∥BC,交AB于M,交AC于N,交AH于G.

【提炼运用】
已知:点P是等边△ABC内任意一点,设到三边的距离分别为a、b、c,且使得以a、b、c为边能够构成三角形.
请在图中画出满足条件的点P一切可能的位置,并对这些位置加以说明.


manfen5.com 满分网 manfen5.com 满分网 manfen5.com 满分网 查看答案
某超市经营一种进价为2元/件的商品.销售过程中发现此商品的销售单价x(元)与日销量y(件)之间,有如下关系:
x3591011
y1814642
日销量y(件)与销售单价x(元)的关系可近似的看作一次函数.
(1)求y与x之间的函数关系式;
(2)求日销售利润W(元)与销售单价x之间的函数关系式;
(3)求销售单价x为多少时,才能获得最大的日销售利润?
查看答案
如图,△ABC中,AB=BC,∠ABC=90°,△ABC绕B点顺时针旋转至△A1BC1位置,设旋转角为α,0°<α<90°
(1)求证:EA1=FC;
(2)当α=______时,四边形BC1DA是菱形?证明你的结论.

manfen5.com 满分网 查看答案
某电脑公司经销甲种型号电脑,受经济危机影响,电脑价格不断下降.今年三月份的电脑售价比去年同期每台降价1000元,如果卖出相同数量的电脑,去年销售额为10万元,今年销售额只有8万元.
(1)今年三月份甲种电脑每台售价多少元?
(2)为了增加收入,电脑公司决定再经销乙种型号电脑,已知甲种电脑每台进价为3500元,乙种电脑每台进价为3000元,公司预计用不多于5万元且不少于4.8万元的资金购进这两种电脑共15台,共有哪几种进货方案?
查看答案
如图,太阳光线与地面成63°角,一棵倾斜的大树(AB)与地面成34°角,这时测得大树在地面的影长约为10米.求AB的长.(结果保留两个有效数字)
(参考数据:sin63°≈manfen5.com 满分网,tan63°≈2,sin34°≈manfen5.com 满分网,tan34°≈manfen5.com 满分网

manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.