小华将一张矩形纸片(如图1)沿对角线CA剪开,得到两张三角形纸片(如图2),其中∠ACB=α,然后将这两张三角形纸片按如图3所示的位置摆放,△EFD纸片的直角顶点D落在△ACB纸片的斜边AC上,直角边DF落在AC所在的直线上.
(1)若ED与BC相交于点G,取AG的中点M,连接MB、MD,当△EFD纸片沿CA方向平移时(如图3),请你观察、测量MB、MD的长度,猜想并写出MB与MD的数量关系,然后证明你的猜想;
(2)在(1)的条件下,求出∠BMD的大小(用含α的式子表示),并说明当α=45°时,△BMD是什么三角形;
(3)在图3的基础上,将△EFD纸片绕点C逆时针旋转一定的角度(旋转角度小于90°),此时△CGD变成△CHD,同样取AH的中点M,连接MB、MD(如图4),请继续探究MB与MD的数量关系和∠BMD的大小,直接写出你的猜想,不需要证明,并说明α为何值时,△BMD为等边三角形.
考点分析:
相关试题推荐
某市政府大力扶持大学生创业,李明在政府的扶持下投资销售一种进价为每件20元的护眼台灯.销售过程中发现,每月销售量y(件)与销售单价x(元)之间的关系可近似的看作一次函数:y=-10x+500.
(1)设李明每月获得利润为w(元),当销售单价定为多少元时,每月可获得最大利润?
(2)如果李明想要每月获得2000元的利润,那么销售单价应定为多少元?
(3)根据物价部门规定,这种护眼台灯的销售单价不得高于32元,如果李明想要每月获得的利润不低于2000元,那么他每月的成本最少需要多少元?
(成本=进价×销售量)
查看答案
市某中学的一个数学兴趣小组在本校学生中开展主题为“垃圾分类知多少”的专题调查活动,采取随机抽样的方式进行问卷调查,问卷调查的结果分为“非常了解”、“比较了解”、“基本了解”、“不太了解”四个等级,划分等级后的数据整理如下表:
等级 | 非常了解 | 比较了解 | 基本了解 | 不太了解 |
频数 | 40 | 120 | 36 | 4 |
频率 | 0.2 | m | 0.18 | 0.02 |
(1)本次问卷调查取样的样本容量为______,表中的m值为______;
(2)根据表中的数据计算等级为“非常了解”的频数在扇形统计图所对应的扇形的圆心角的度数,并补全扇形统计图;
(3)若该校有学生1500人,请根据调查结果估计这些学生中“比较了解”垃圾分类知识的人数约为多少?
.
查看答案
已知,一个圆形电动砂轮的半径是20cm,转轴OA长是40cm.砂轮未工作时停靠在竖直的档板OM上,边缘与档板相切于点B.现在要用砂轮切割水平放置的薄铁片(铁片厚度忽略不计,ON是切痕所在的直线).
(1)在图②的坐标系中,求点A与点A
1的坐标;
(2)求砂轮工作前后,转轴OA旋转的角度和圆心A转过的弧长.
注:图①是未工作时的示意图,图②是工作前后的示意图.
查看答案
近期以来,大蒜和绿豆的市场价格离奇攀升,网民戏称为“蒜你狠”,“豆你玩”.以绿豆为例,5月份上旬的市场价格已达16元/千克.市政府决定采取价格临时干预措施,调进绿豆以平抑市场价格.经市场调研预测,该市每调进100吨绿豆,市场价格就下降1元/千克.为了即能平抑市场价格,又要保护豆农的生产积极性,绿豆的市场价格控制在8元/千克到10元/千克之间(含8元/千克和10元/千克).问调进绿豆的吨数应在什么范围内为宜?
查看答案
(1)填空:如图,Rt△ABC中,∠C=90°,∠B=45°,AD是△ABC的角平分线,过点D作辅助线DE⊥AB于点E,则可以得到AC、CD、AB三条线段之间的数量关系为______.
(2)如图,若将(1)中条件“Rt△ABC中,∠C=90°,∠B=45°”改为“△ABC中,∠C=2∠B”请问(1)中的结论是否仍然成立?证明你的猜想.
查看答案