满分5 > 初中数学试题 >

如图所示,△ABC是直角三角形,∠ABC=90°,以AB为直径的⊙O交AC于点E...

如图所示,△ABC是直角三角形,∠ABC=90°,以AB为直径的⊙O交AC于点E,点D是BC边的中点,连接DE.
(1)求证:DE与⊙O相切;
(2)若⊙O的半径为manfen5.com 满分网,DE=3,求AE.

manfen5.com 满分网
(1)根据切线的判定定理只需证明OE⊥DE即可; (2)根据(1)中的证明过程,会发现BC=2DE,根据勾股定理求得AC的长,进一步求得直角三角形斜边上的高BE,最后根据勾股定理求得AE的长. 【解析】 (1)证明:连接OE,BE, ∵AB是直径. ∴BE⊥AC. ∵D是BC的中点, ∴DE=DB. ∴∠DBE=∠DEB. 又OE=OB, ∴∠OBE=∠OEB. ∴∠DBE+∠OBE=∠DEB+∠OEB. 即∠ABD=∠OED. 但∠ABC=90°, ∴∠OED=90°. ∴DE是⊙O的切线. (2)法1:∵∠ABC=90°,AB=2,BC=2DE=6, ∴AC=4. ∴BE=3. ∴AE=; 法2:∵(8分) ∴(10分) ∴.(12分)
复制答案
考点分析:
相关试题推荐
如图,在测量塔高AB时,选择与塔底在同一水平面的同一直线上的C、D两点,用测角仪器测得塔顶A的仰角分别是30°和60°,已知测角仪器高CE=1.5米,CD=30米,求塔高AB.(保留根号)

manfen5.com 满分网 查看答案
大家一定熟知杨辉三角(Ⅰ),观察下列等式(Ⅱ)
manfen5.com 满分网
根据前面各式规律,则(a+b)5=    查看答案
如图,已知∠AOB=30°,M为OB边上一点,以M为圆心、2cm为半径作M.若⊙M在OB边上运动,则当OM=    cm时,⊙M与OA相切.
manfen5.com 满分网 查看答案
如图是一个外轮廓为矩形的机器零件平面示意图,根据图中的尺寸(单位:mm),计算两圆孔中心A和B的距离为    mm.
manfen5.com 满分网 查看答案
分式方程:manfen5.com 满分网的解是x=    查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.