如图,在△ABC中,∠B=90°,AB=6cm,BC=8cm,点P从点A出发沿AB边向点B以1cm/秒的速度移动,点Q从点B出发沿BC边向点C以2cm/秒的速度移动.
(1)如果P、Q分别从A、B同时出发,经过多长时间,使△PBQ的面积为8cm
2?
(2)如果P、Q分别从A、B同时出发,当P、Q两点运动几秒时,PQ有最小值,并求这个最小值.
考点分析:
相关试题推荐
国家推行“节能减排,低碳经济”政策后,某环保节能设备生产企业的产品供不应求.若该企业的某种环保设备每月的产量保持在一定的范围,每套产品的生产成本不高于50万元,每套产品的售价不低于90万元.已知这种设备的月产量x(套)与每套的售价y
1(万元)之间满足关系式y
1=170-2x,月产量x(套)与生产总成本y
2(万元)存在如图所示的函数关系.
(1)直接写出y
2与x之间的函数关系式;
(2)求月产量x的范围;
(3)当月产量x(套)为多少时,这种设备的利润W(万元)最大?最大利润是多少?
查看答案
如图所示,△ABC是直角三角形,∠ABC=90°,以AB为直径的⊙O交AC于点E,点D是BC边的中点,连接DE.
(1)求证:DE与⊙O相切;
(2)若⊙O的半径为
,DE=3,求AE.
查看答案
如图,在测量塔高AB时,选择与塔底在同一水平面的同一直线上的C、D两点,用测角仪器测得塔顶A的仰角分别是30°和60°,已知测角仪器高CE=1.5米,CD=30米,求塔高AB.(保留根号)
查看答案
大家一定熟知杨辉三角(Ⅰ),观察下列等式(Ⅱ)
根据前面各式规律,则(a+b)
5=
.
查看答案
如图,已知∠AOB=30°,M为OB边上一点,以M为圆心、2cm为半径作M.若⊙M在OB边上运动,则当OM=
cm时,⊙M与OA相切.
查看答案