满分5 > 初中数学试题 >

如图1,在△ABC中,AB=BC,P为AB边上一点,连接CP,以PA、PC为邻边...

如图1,在△ABC中,AB=BC,P为AB边上一点,连接CP,以PA、PC为邻边作▱APCD,AC与PD相交于点E,已知∠ABC=∠AEP=α(0°<α<90°).
(1)求证:∠EAP=∠EPA;
(2)▱APCD是否为矩形?请说明理由;
(3)如图2,F为BC中点,连接FP,将∠AEP绕点E顺时针旋转适当的角度,得到∠MEN(点M、N分别是∠MEN的两边与BA、FP延长线的交点).猜想线段EM与EN之间的数量关系,并证明你的结论.
manfen5.com 满分网
(1)根据AB=BC可证∠CAB=∠ACB,则在△ABC与△AEP中,有两个角对应相等,根据三角形内角和定理,即可证得; (2)由(1)知∠EPA=∠EAP,则AC=DP,根据对角线相等的平行四边形是矩形即可证明; (3)可以证明△EAM≌△EPN,从而得到EM=EN. (1)证明:在△ABC和△AEP中, ∵∠ABC=∠AEP,∠BAC=∠EAP, ∴∠ACB=∠APE, 在△ABC中,AB=BC, ∴∠ACB=∠BAC, ∴∠EPA=∠EAP. (2)【解析】 ▱APCD是矩形.理由如下: ∵四边形APCD是平行四边形, ∴AC=2EA,PD=2EP, ∵由(1)知∠EPA=∠EAP, ∴EA=EP, 则AC=PD, ∴▱APCD是矩形. (3)【解析】 EM=EN. 证明:∵EA=EP, ∴∠EPA===90°-α, ∴∠EAM=180°-∠EPA=180°-(90°-α)=90°+α, 由(2)知∠CPB=90°,F是BC的中点, ∴FP=FB, ∴∠FPB=∠ABC=α, ∴∠EPN=∠EPA+∠APN=∠EPA+∠FPB=90°-α+α=90°+α, ∴∠EAM=∠EPN, ∵∠AEP绕点E顺时针旋转适当的角度,得到∠MEN, ∴∠AEP=∠MEN, ∴∠AEP-∠AEN=∠MEN-∠AEN,即∠MEA=∠NEP, 在△EAM和△EPN中, ∴△EAM≌△EPN(ASA), ∴EM=EN.
复制答案
考点分析:
相关试题推荐
某市政府大力扶持大学生创业,李明在政府的扶持下投资销售一种进价为每件20元的护眼台灯.销售过程中发现,每月销售量y(件)与销售单价x(元)之间的关系可近似的看作一次函数:y=-10x+500.
(1)设李明每月获得利润为w(元),当销售单价定为多少元时,每月可获得最大利润?
(2)如果李明想要每月获得2000元的利润,那么销售单价应定为多少元?
(3)根据物价部门规定,这种护眼台灯的销售单价不得高于32元,如果李明想要每月获得的利润不低于2000元,那么他每月的成本最少需要多少元?
(成本=进价×销售量)
查看答案
如图,AF垂直平分BC于D,∠ACB=∠F=30°,AC=4cm,点M从点D出发以每秒1cm的速度向终点F运动,设运动时间为t,△CMF的面积为S.
(1)求S与t之间的函数关系;
(2)连接BM,并延长交CF于P,当S=4manfen5.com 满分网时,判断△CMP的形状.

manfen5.com 满分网 查看答案
如图,PA、PB是半径为1的⊙O的两条切线,点A、B分别为切点,∠APB=60°,OP与弦AB交于点C,与⊙O交于点D.
(1)在不添加任何辅助线的情况下,写出图中所有的全等三角形;
(2)求阴影部分的面积(结果保留π).

manfen5.com 满分网 查看答案
在如图的方格纸中,每个小方格都是边长为1个单位的正方形,△ABC的三个顶点都在格点上(每个小方格的顶点叫格点).
(1)如果建立直角坐标系,使点B的坐标为(-5,2),点C的坐标为(-2,2),则点A的坐标为______
(2)画出△ABC绕点P顺时针旋转90°后的△A1B1C1,并求线段BC扫过的面积.
manfen5.com 满分网
查看答案
小颖和小红两位同学在学习“概率”时,做掷骰子(质地均匀的正方体)实验.
(1)他们在一次实验中共掷骰子60次,试验的结果如下:
朝上的点数123456
出现的次数 79682010
①填空:此次实验中“5点朝上”的频率为______
②小红说:“根据实验,出现5点朝上的概率最大.”她的说法正确吗?为什么?
(2)小颖和小红在实验中如果各掷一枚骰子,那么两枚骰子朝上的点数之和为多少时的概率最大?试用列表或画树状图的方法加以说明,并求出其最大概率.
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.