满分5 > 初中数学试题 >

如图,在△BCE中,∠ACB=∠CAB+30°=∠ABC+60°,在边AB上取点...

如图,在△BCE中,∠ACB=∠CAB+30°=∠ABC+60°,在边AB上取点D,在CA的延长线上取点E,使AC•CE+AB•BD=BC2
求证:(1)∠CEB>∠ABC;
(2)BE=2CD.

manfen5.com 满分网
(1)延长CE到F,使EF=2BD,由∠ACB=∠CAB+30°=∠ABC+60°,可得∠ACB=90°,又AC•CE+AB•BD=BC2,等量代换可得AC(CE+2BD)=BC2,即,则△ABC∽△BFC,∠ABC=∠F,根据三角形外角的性质,即可证得; (2)∠F=30°,则BF=2BC,易证△EFB∽△DBC,即可证得BE=2CD. 证明:(1)延长CE到F,使EF=2BD, ∵在△BCE中,∠ACB=∠CAB+30°=∠ABC+60°, ∴∠ACB=90°,∠ABC=30°,∠CAB=60°, ∴AB=2AC, ∵AC•CE+AB•BD=BC2, ∴AC(CE+2BD)=BC2, ∴AC×CF=BC2, 即, ∴△ABC∽△BFC, ∴∠ABC=∠F=30°, ∵∠CEB>∠F, ∴∠CEB>∠ABC; (2)∵∠F=30°,∠FCB=90°, ∴FB=2BC,又∠F=∠CBD,EF=2BD, ∴△EFB∽△DBC, ∴===, ∴BE=2CD.
复制答案
考点分析:
相关试题推荐
你觉得手机很神奇?它能在瞬间清晰地传递声音、文字、图象等信息,据说以后还能发送味道、触觉信息呢!这里都有手机中电脑芯片的功劳.其实,这些信号在电脑芯片中都是以二进制的形式给出的.每个二进制数都由0和1构成,电脑芯片上电子元件的“开”、“关”分别代表“1”和“0”.一组电子元件的“开”“关”状态就表示相应的二进制数.例如“开”“开”“关”表示“110”.
如图,电脑芯片的某段电路上分布着一组电子元件(假设它们首尾不相连),且相邻的两个元件不能同时是关的.(以下各小题要求写出解答过程)
manfen5.com 满分网
(1)若此电路上有4个元件,则这4个元件所有不同的“开”“关”状态共有多少种?(请一一列出);
(2)若用ak表示电路上k(k≥1)只电子元件所有不同的“开”“关”状态数,试探索ak,ak+1,ak+2之间的关系(不要求论证);
(3)试用(2)中探索出的递推关系式,计算a10的值.
查看答案
不等式x2+px>4x+p-3对于一切0≤p≤4均成立,则实数x的取值范围是    查看答案
如图,PQ=10,以PQ为直径的圆与一个以20为半径的⊙O内切于点P,与正方形ABCD切于点Q,其中A、B两点在⊙O上.若AB=m+manfen5.com 满分网,其中m、n是整数,则m+n的值为   
manfen5.com 满分网 查看答案
把长为1cm的线段分成三段,这三条线段能构成三角形的概率为    查看答案
manfen5.com 满分网如图所示,大正方形ABCD的两个对角上摆放着两个小正方形BEFG和DHMN.两个小正方形重迭部分的面积是1.A、F、N三点共线,如果ABCD的面积是144,那么MN=    查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.