满分5 > 初中数学试题 >

如图,△ABC和△ADE都是等腰直角三角形,∠BAC=∠DAE=90°,四边形A...

如图,△ABC和△ADE都是等腰直角三角形,∠BAC=∠DAE=90°,四边形ACDE是平行四边形,连接CE交AD于点F,连接BD交CE于点G,连接BE,下列结论中:
①CE=BD;            ②△ADC是等腰直角三角形;
③∠ADB=∠AEB;      ④CD•AE=EF•CG.
一定正确的结论是   
manfen5.com 满分网
①利用SAS证明△BAD≌△CAE,可得到CE=BD, ②利用平行四边形的性质可得AE=CD,再结合△ADE是等腰直角三角形可得到△ADC是等腰直角三角形; ③利用SAS证明△BAE≌△BAD可得到∠ADB=∠AEB; ④利用得出∠GFD=∠AFE,以及∠GDF+GFD=90°,进而得出△CGD∽△EAF,得出比例式. 【解析】 ①∵∠BAC=∠DAE=90°, ∴∠BAC+∠DAC=∠DAE+∠DAC, 即:∠BAD=∠CAE, ∵△ABC和△ADE都是等腰直角三角形, ∴AB=AC,AE=AD, ∴△BAD≌△CAE(SAS), ∴CE=BD, ∴故①正确; ②∵四边形ACDE是平行四边形, ∴∠EAD=∠ADC=90°,AE=CD, ∵△ADE都是等腰直角三角形, ∴AE=AD, ∴AD=CD, ∴△ADC是等腰直角三角形, ∴②正确; ③∵△ADC是等腰直角三角形, ∴∠CAD=45°, ∴∠BAD=90°+45°=135°, ∵∠EAD=∠BAC=90°,∠CAD=45°, ∴∠BAE=360°-90°-90°-45°=135°, 又∵AB=AB,AD=AE, ∴△BAE≌△BAD(SAS), ∴∠ADB=∠AEB; 故③正确; ④∵△BAD≌△CAE,△BAE≌△BAD, ∴△CAE≌△BAE, ∴∠BEA=∠AEC=∠BDA, ∵∠AEF+∠AFE=90°, ∴∠AFE+∠BEA=90°, ∵∠GFD=∠AFE, ∴∠GDF+∠GFD=90°, ∴∠CGD=90°, ∵∠FAE=90°,∠GCD=∠AEF, ∴△CGD∽△EAF, ∴CDEF=CGAE, ∴CD•AE=EF•CG. 故④正确, 故答案为①②③④.
复制答案
考点分析:
相关试题推荐
如图是抛物线y=ax2+bx+c的一部分,其对称轴为直线x=1,若其与x轴一交点为B(3,0),则由图象可知,不等式ax2+bx+c>0的解集是   
manfen5.com 满分网 查看答案
分解因式:a3+a2-a-1=    查看答案
manfen5.com 满分网,则manfen5.com 满分网=    查看答案
如图,在平面直角坐标系中,四边形OABC是菱形,点C的坐标为(4,0),∠AOC=60°,垂直于x轴的直线l从y轴出发,沿x轴正方向以每秒1个单位长度的速度向右平移,设直线l与菱形OABC的两边分别交于点M,N(点M在点N的上方),若△OMN的面积为S,直线l的运动时间为t 秒(0≤t≤4),则能大致反映S与t的函数关系的图象是( )
manfen5.com 满分网
A.manfen5.com 满分网
B.manfen5.com 满分网
C.manfen5.com 满分网
D.manfen5.com 满分网
查看答案
如图,在△ABC中,AB=10,AC=8,BC=6,经过点C且与边AB相切的动圆与CB,CA分别相交于点E,F,则线段EF长度的最小值是( )
manfen5.com 满分网
A.manfen5.com 满分网
B.4.75
C.5
D.4.8
查看答案
试题属性

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.