如图,在梯形AOBC中,AC∥OB,AO⊥OB,OA=4,OB=10,tan∠OBC是方程x
2+
x-1=0的一个根,以O为坐标原点,OB、OA所在的直线分别为x轴,y轴建立平面直角坐标系.
(1)求C点坐标;
(2)求经过O、C、B三点的抛物线解析式;
(3)M是(2)中抛物线上一动点,过M作x轴的平行线交(2)中的抛物线于另一点N(M在N左侧).问:是否存在点M使得以MN为直径的圆正好与x轴相切?若不存在,请说明理由;若存在,求此圆的半径.
考点分析:
相关试题推荐
华宇公司获得授权生产某种奥运纪念品,经市场调查分析,该纪念品的销售量y
1(万件)与纪念品的价格x(元/件)之间的函数图象如图所示,该公司纪念品的生产数量y
2(万件)与纪念品的价格x(元/件)近似满足函数关系式y
2=-
x+85.若每件纪念品的价格不小于20元,且不大于40元.请解答下列问题:
(1)求y
1与x的函数关系式,并写出x的取值范围;
(2)当价格x为何值时,使得纪念品产销平衡(生产量与销售量相等);
(3)当生产量低于销售量时,政府常通过向公司补贴纪念品的价格差来提高生产量,促成新的产销平衡.若要使新的产销平衡时销售量达到46万件,政府应对该纪念品每件补贴多少元?
查看答案
如图1,在四边形ABCD中,AB=CD,E、F分别是BC、AD的中点,连接EF并延长,分别与BA、CD的延长线交于点M、N,则∠BME=∠CNE(不需证明).
(温馨提示:在图1中,连接BD,取BD的中点H,连接HE、HF,根据三角形中位线定理,证明HE=HF,从而∠1=∠2,再利用平行线性质,可证得∠BME=∠CNE.)
问题一:如图2,在四边形ADBC中,AB与CD相交于点O,AB=CD,E、F分别是BC、AD的中点,连接EF,分别交DC、AB于点M、N,判断△OMN的形状,请直接写出结论;
问题二:如图3,在△ABC中,AC>AB,D点在AC上,AB=CD,E、F分别是BC、AD的中点,连接EF并延长,与BA的延长线交于点G,若∠EFC=60°,连接GD,判断△AGD的形状并证明.
查看答案
几何模型:
条件:如下图,A、B是直线l同旁的两个定点.
问题:在直线l上确定一点P,使PA+PB的值最小.
方法:作点A关于直线l的对称点A′,连接A′B交l于点P,则PA+PB=A′B的值最小(不必证明).
模型应用:
(1)如图1,正方形ABCD的边长为2,E为AB的中点,P是AC上一动点.连接BD,由正方形对称性可知,B与D关于直线AC对称.连接ED交AC于P,则PB+PE的最小值是______;
(2)如图2,⊙O的半径为2,点A、B、C在⊙O上,OA⊥OB,∠AOC=60°,P是OB上一动点,求PA+PC的最小值;
(3)如图3,∠AOB=45°,P是∠AOB内一点,PO=10,Q、R分别是OA、OB上的动点,求△PQR周长的最小值.
查看答案
如图所示.某校计划将一块形状为锐角三角形ABC的空地进行生态环境改造.已知△ABC的边BC长120米,高AD长80米.学校计划将它分割成△AHG、△BHE、△GFC和矩形EFGH四部分(如图).其中矩形EFGH的一边EF在边BC上.其余两个顶点H、G分别在边AB、AC上.现计划在△AHG上种草,每平方米投资6元;在△BHE、△FCG上都种花,每平方米投资10元;在矩形EFGH上兴建爱心鱼池,每平方米投资4元.
(1)当FG长为多少米时,种草的面积与种花的面积相等?
(2)当矩形EFGH的边FG为多少米时,△ABC空地改造总投资最小,最小值为多少?
查看答案
我市精英中学校团委在学校七年级8个班中,开展了一次“迎国庆60周年”知识比赛活动,得分最多的班级为优胜班级,比赛结果如下表:
班级 | 七(1) | 七(2) | 七(3) | 七(4) | 七(5) | 七(6) | 七(7) | 七(8) |
得分 | 90 | 90 | 80 | 80 | 90 | 80 | 100 | 90 |
学生人数 | 46 | 46 | 48 | 47 | 49 | 45 | 50 | 50 |
(1)请直接写出各班代表队得分数的平均数、众数和中位数.
平均数:______; 众数:______;中位数:______.
(2)学校决定:在本次比赛获得优胜的班级中,随意选取5名学生,免费送到市里观看节目,小丽是七(7)班的学生,则她获得免费到市里观看节目的概率是多少?
查看答案