满分5 > 初中数学试题 >

CD经过∠BCA顶点C的一条直线,CA=CB.E,F分别是直线CD上两点,且∠B...

CD经过∠BCA顶点C的一条直线,CA=CB.E,F分别是直线CD上两点,且∠BEC=∠CFA=∠α.
manfen5.com 满分网
(1)若直线CD经过∠BCA的内部,且E,F在射线CD上,请解决下面两个问题:
①如图1,若∠BCA=90°,∠α=90°,
则BE______CF;EF______|BE-AF|(填“>”,“<”或“=”);
②如图2,若0°<∠BCA<180°,请添加一个关于∠α与∠BCA关系的条件______,使①中的两个结论仍然成立,并证明两个结论成立.
(2)如图3,若直线CD经过∠BCA的外部,∠α=∠BCA,请提出EF,BE,AF三条线段数量关系的合理猜想(不要求证明).
由题意推出∠CBE=∠ACF,再由AAS定理证△BCE≌△CAF,继而得答案. 【解析】 (1)①∵∠BCA=90°,∠α=90°, ∴∠BCE+∠CBE=90°,∠BCE+∠ACF=90°, ∴∠CBE=∠ACF, ∵CA=CB,∠BEC=∠CFA; ∴△BCE≌△CAF, ∴BE=CF;EF=|BE-AF|. ②所填的条件是:∠α+∠BCA=180°. 证明:在△BCE中,∠CBE+∠BCE=180°-∠BEC=180°-∠α. ∵∠BCA=180°-∠α, ∴∠CBE+∠BCE=∠BCA. 又∵∠ACF+∠BCE=∠BCA, ∴∠CBE=∠ACF, 又∵BC=CA,∠BEC=∠CFA, ∴△BCE≌△CAF(AAS) ∴BE=CF,CE=AF, 又∵EF=CF-CE, ∴EF=|BE-AF|. (2)EF=BE+AF.
复制答案
考点分析:
相关试题推荐
将一直角梯形放在如图所示的正方形网格(图中每个小正方形的边长均为一个单位长)中,请你按照以下要求进行合理设计﹙说明:直接画出图形,不要求写分析过程.﹚
(1)在图1中画一条直线将一个直角梯形分成面积相等的两部分,分别设计出两种不同的分割方法;
(2)在图2中将直角梯形进行适当分割后拼接成一个与所给直角梯形面积相等的正方形,用虚线画出分割线,再用实线画出拼接而成的正方形.
manfen5.com 满分网
查看答案
已知:如图,在直角梯形ABCD中,AD∥BC,AB⊥AD,BC=CD,BE⊥CD,垂足为点E,点F在BD上,连接AF、EF.
(1)求证:AD=ED;
(2)如果AF∥CD,求证:四边形ADEF是菱形.

manfen5.com 满分网 查看答案
如图、在△ABC中,D是BC边上的一点,E是AD的中点,过点A作BC的平行线交CE的延长线于F,且AF=BD.
求证:D是BC的中点.

manfen5.com 满分网 查看答案
小明、小华用四张扑克牌玩游戏(方块2、黑桃4、红桃5、梅花5),他俩将扑克牌洗匀后,背面朝上放置在桌面上,小明先抽,小华后抽,抽出的牌不放回.小明、小华约定:若小明抽出的牌的牌面数字比小华的大,则小明胜,反之则小明负;若牌面数字一样,则不分胜负,你认为这个游戏是否公平?说明你的理由.(列表或树形图)
查看答案
国家规定“中小学生每天在校体育活动时间不低于1小时”.为此,某市就“你每天在校体育活动时间是多少?”的问题随机调查了辖区内300名初中学生.根据调查结果绘制成的统计图(部分)如图所示,其中分组情况是:
A组:t<0.5h;B组:0.5h≤t<1h;C组:1h≤t<1.5h;D组:t≥1.5h
请根据上述信息解答下列问题:
(1)C组的人数是______
(2)本次调查数据的中位数落在______组内;
(3)若该辖区约有24 000名初中学生,请你估计其中达国家规定体育活动时间的人约有多少?

manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.