满分5 > 初中数学试题 >

如图,已知:C是以AB为直径的半圆O上一点,CH⊥AB于点H,直线AC与过B点的...

如图,已知:C是以AB为直径的半圆O上一点,CH⊥AB于点H,直线AC与过B点的切线相交于点D,E为CH中点,连接AE并延长交BD于点F,直线CF交直线AB于点G.
(1)求证:点F是BD中点;
(2)求证:CG是⊙O的切线;
(3)若FB=FE=2,求⊙O的半径.

manfen5.com 满分网
(1)易得△AEH∽△AFB,△ACE∽△ADF;进而可得比例关系式,再根据其中的相等关系可得BF=FD,即点F是BD中点; (2)连接CB、OC,根据角的关系易得∠BCF=∠CBF=90°-∠CBA=∠CAB=∠ACO,进而可得∠OCF=90°,故可得CG是⊙O的切线; (3)根据切割线定理可得:(2+FG)2=BG×AG=2BG2,由勾股定理得:BG2=FG2-BF2,解之即可的答案. (1)证明:∵CH⊥AB,DB⊥AB, ∴△AEH∽△AFB,△ACE∽△ADF;(1分) ∴. ∵HE=EC, ∴BF=FD,即点F是BD中点. (2)证明:连接CB、OC; ∵AB是直径, ∴∠ACB=90°. ∵F是BD中点, ∴∠BCF=∠CBF=90°-∠CBA=∠CAB=∠ACO. ∴∠OCF=90°, 又∵OC为圆O半径, ∴CG是⊙O的切线.(6分) (3)【解析】 ∵FC=FB=FE, ∴∠FCE=∠FEC.(7分) ∵∠FEC=∠AEH, ∴∠FCE=∠AEH, ∵∠G+∠FCE=90°,∠FAB+∠AEH=90°, ∴∠G=∠FAB, ∴FA=FG, ∵FB⊥AG, ∴AB=BG.(8分) ∵(2+FG)2=BG×AG=2BG2① ∵BG2=FG2-BF2② 由①、②得:FG2-4FG-12=0 ∴FG1=6,FG2=-2(舍去) ∴AB=BG=. ∴⊙O半径为2.(10分)
复制答案
考点分析:
相关试题推荐
已知抛物线y=x2-kx+k-5.
(1)求证:不论k为何实数,此抛物线与x轴一定有两个不同的交点;
(2)若此二次函数图象的对称轴为x=1,求它的解析式;
(3)在(2)的条件下,设抛物线的顶点为A,抛物线与x轴的两个交点中右侧交点为B,
若P为x轴上一点,且△PAB为等腰三角形,求点P的坐标.
查看答案
如图,射线AM∥BN,∠A=∠B=90°,点D、C分别在AM、BN上运动(点D不与A重合、点C不与B重合),E是AB边上的动点(点E不与A、B重合),在运动过程中始终保持DE⊥EC且AD+DE=AB=a.
(1)求证:△ADE∽△BEC;
(2)设AE=m,请探究:△BEC的周长是否与m值有关?若有关,请用含有m的代数式表示△BEC的周长;若无关,请说明理由.

manfen5.com 满分网 查看答案
为了鼓励居民节约用水,我市某地水费按下表规定收取:
每户每月用水量不超过10吨(含10吨)超过10吨的部分
水费单价1.30元/吨2.00元/吨
(1)若某户用水量为x吨,需付水费为y元,求水费y(元)与用水量x(吨)之间的函数关系式;
(2)若小华家四月份付水费17元,问他家四月份用水多少吨?
(3)已知某住宅小区100户居民五月份交水费共1682元,且该月每户用水量均不超过15吨(含15吨),求该月用水量不超过10吨的居民最多可能有多少户?
查看答案
已知:如图,在△ABC中,D是AC的中点,E是线段BC延长线上一点,过点A作BE的平行线与线段ED的延长线交于点F,连接AE,CF.
(1)求证:AF=CE;
(2)若AC=EF,试判断四边形AFCE是什么样的四边形,并证明你的结论.

manfen5.com 满分网 查看答案
解分式方程:manfen5.com 满分网
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.