满分5 > 初中数学试题 >

如图,已知梯形ABCD中,AD∥BC,AD=2,AB=BC=8,CD=10. (...

如图,已知梯形ABCD中,AD∥BC,AD=2,AB=BC=8,CD=10.
(1)求梯形ABCD的面积S;
(2)动点P从点B出发,以1cm/s的速度,沿B⇒A⇒D⇒C方向,向点C运动;动点Q从点C出发,以1cm/s的速度,沿C⇒D⇒A方向,向点A运动,过点Q作QE⊥BC于点E.若P、Q两点同时出发,当其中一点到达目的地时整个运动随之结束,设运动时间为t秒.问:
①当点P在B⇒A上运动时,是否存在这样的t,使得直线PQ将梯形ABCD的周长平分?若存在,请求出t的值;若不存在,请说明理由;
②在运动过程中,是否存在这样的t,使得以P、A、D为顶点的三角形与△CQE相似?若存在,请求出所有符合条件的t的值;若不存在,请说明理由;
③在运动过程中,是否存在这样的t,使得以P、D、Q为顶点的三角形恰好是以DQ为一腰的等腰三角形?若存在,请求出所有符合条件的t的值;若不存在,请说明理由.
manfen5.com 满分网
(1)求面积要先求梯形的高,可根据两底的差和CD的长,在直角三角形中用勾股定理进行求解,得出高后即可求出梯形的面积. (2)①PQ平分梯形的周长,那么AD+DQ+AP=BC+CQ+BP,已知了AD,BC的长,可以用t来表示出AP,BP,CQ,QD的长,那么可根据上面的等量关系求出t的值. ②本题要分三种情况进行讨论: 一,当P在AB上时,即0<t≤8,如果两三角形相似,那么∠C=∠ADP,或∠C=∠APD,那么在△ADP中根据∠C的正切值,求出t的值. 二,当P在AD上时,即8<t≤10,由于P,A,D在一条直线上,因此构不成三角形. 三,当P在CD上时,即10<t≤12,由于∠ADC是个钝角,因此△ADP是个钝角三角形因此不可能和直角△CQE相似. 综合三种情况即可得出符合条件的t的值. (3)和(2)相同也要分三种情况进行讨论: 一,当P在AB上时,即0<t≤8,等腰△PDQ以DQ为腰,因此DQ=DP或DQ=PQ,可以通过构建直角三角形来表示出DP,PQ的长,然后根据得出的等量关系来求t的值. 二,当P在AD上时,即8<t≤10,由于BA+AD=CD=10,因此DP=DQ=10-t,因此DP,DQ恒相等. 三,当P在CD上时,即10<t≤12,情况同二. 综合三种情况可得出等腰三角形以DQ为腰时,t的取值. 【解析】 (1)过D作DH∥AB交BC于H点, ∵AD∥BH,DH∥AB, ∴四边形ABHD是平行四边形. ∴DH=AB=8;BH=AD=2. ∴CH=8-2=6. ∵CD=10, ∴DH2+CH2=CD2∴∠DHC=90°. ∠B=∠DHC=90°. ∴梯形ABCD是直角梯形. ∴SABCD=(AD+BC)AB=×(2+8)×8=40. (2)①∵BP=CQ=t, ∴AP=8-t,DQ=10-t, ∵AP+AD+DQ=PB+BC+CQ, ∴8-t+2+10-t=t+8+t. ∴t=3<8. ∴当t=3秒时,PQ将梯形ABCD周长平分. ②第一种情况:0<t≤8若△PAD∽△QEC则∠ADP=∠C ∴tan∠ADP=tan∠C== ∴=,∴t= 若△PAD∽△CEQ则∠APD=∠C ∴tan∠APD=tan∠C==,∴= ∴t= 第二种情况:8<t≤10,P、A、D三点不能组成三角形; 第三种情况:10<t≤12△ADP为钝角三角形与Rt△CQE不相似; ∴t=或t=时,△PAD与△CQE相似. ③第一种情况:当0≤t≤8时.过Q点作QE⊥BC,QH⊥AB,垂足为E、H. ∵AP=8-t,AD=2, ∴PD==. ∵CE=t,QE=t, ∴QH=BE=8-t,BH=QE=t. ∴PH=t-t=t. ∴PQ==,DQ=10-t. Ⅰ:DQ=DP,10-t=, 解得t=8秒. Ⅱ:DQ=PQ,10-t=, 化简得:3t2-52t+180=0 解得:t=,t=>8(不合题意舍去) ∴t= 第二种情况:8≤t≤10时.DP=DQ=10-t. ∴当8≤t<10时,以DQ为腰的等腰△DPQ恒成立. 第三种情况:10<t≤12时.DP=DQ=t-10. ∴当10<t≤12时,以DQ为腰的等腰△DPQ恒成立. 综上所述,t=或8≤t<10或10<t≤12时,以DQ为腰的等腰△DPQ成立.
复制答案
考点分析:
相关试题推荐
某公司经销某品牌运动鞋,年销售量为10万双,每双鞋按250元销售,可获利25%,设每双鞋的成本价为a元.
(1)试求a的值;
(2)为了扩大销售量,公司决定拿出一定量的资金做广告,根据市场调查,若每年投入广告费为x(万元)时,产品的年销售量将是原来年销售量的y倍,且y与x之间的关系如图所示,可近似看作是抛物线的一部分.请根据图象提供的信息,求出y与x之间的函数关系式;
(3)在(2)的条件下求年利润S (万元)与广告费x(万元)之间的函数关系式,并请回答广告费x(万元)在什么范围内,公司获得的年利润S(万元)随广告费的增大而增多?(注:年利润S=年销售总额-成本费-广告费)

manfen5.com 满分网 查看答案
如图1,已知△ABC,绕点C旋转180°后,得到△C′B′C.
(1)指出下列结论正确的是______(填序号)
①△ABC≌△C′B′C;②AB=C′B′;③AB∥C′B′;④点C是线段BB′的中点.
(2)如图2,在线段AB上取一点D,连接B′D交AC于E,且使∠B′DB=120°,猜想∠A等于多少度时,AB=B′E?并说明理由.
(3)当∠B′DB≠120°时,(2)中的其他条件不变,如果AB=B′E的结论仍然成立,那么∠B′DB与∠A应满足什么数量关系?(直接写出结论,不必说明理由)
manfen5.com 满分网
查看答案
如图,AB是半圆O的直径,AD为弦,∠DBC=∠A.
(1)求证:BC是半圆O的切线;
(2)若OC∥AD,OC交BD于E,BD=6,CE=4,求AD的长.

manfen5.com 满分网 查看答案
2011年2月20日,国内成品油价格迎来今年的首次提价,宁波市93号汽油的价格由6.78元/升涨到了7.06元/升,这也是93号汽油价格首次过7元大关,天一论坛就“关于汽油涨价对用车造成的影响”这一问题向私家车车主进行了问卷调查,并制作了统计图表的一部分如下:
车主的态度百分比
A.没有影响4%
B.影响不大,还可以接受P
C.有影响,现在用车次数减少了52%
D.影响很大,需要放弃用车m
E.不关心这个问题10%
manfen5.com 满分网
(1)结合上述统计图表可得:m=______,p=______
(2)根据以下信息,请补全条形统计图;
(3)据宁波市车管所网站公布的数据截至2011年1月底,宁波市私家车车主约有160万人,根据上述信息,请你估计一下持有“影响不大,还可以接受”这种态度的车主约有多少人?
查看答案
如图,A(1,0),B(3,0),C(0,3),D(2,-1),P(2,2).
(1)问:△ABC与△ADP相似吗?说明理由;
(2)在图中标出点D关于y轴的对称点D′,连接AD′、CD′,判断△ACD′的形状,并说明理由;
(3)直接写出∠OCA+∠OCD的度数.

manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.