某仓库为了保持库内的湿度和温度,四周墙上均装有如图所示的自动通风设施.该设施的下部ABCD是矩形,其中AB=2米,BC=1米;上部CDG是等边三角形,固定点E为AB的中点.△EMN是由电脑控制其形状变化的三角通风窗(阴影部分均不通风),MN是可以沿设施边框上下滑动且始终保持和AB平行的伸缩横杆.
(1)当MN和AB之间的距离为0.5米时,求此时△EMN的面积;
(2)设MN与AB之间的距离为x米,试将△EMN的面积S(平方米)表示成关于x的函数;
(3)请你探究△EMN的面积S(平方米)有无最大值?若有,请求出这个最大值;若没有,请说明理由.
考点分析:
相关试题推荐
已知二次函数y=ax
2+bx+c.
(1)若a=2,c=-3,且二次函数的图象经过点(-1,-2),求b的值;
(2)若a=2,b+c=-2,b>c,且二次函数的图象经过点(p,-2),求证:b≥0.
查看答案
甲乙两辆货车分别从M、N两地出发,沿同一条公路相向而行,当到达对方的出发地后立即装卸货物,5分钟后再按原路以原速度返回各自的出发地,已知M、N两地相距100千米,甲车比乙车早5分钟出发,甲车出发10分钟时两车都行驶了10千米,图表示甲乙两车离各自出发地的路程y(千米)与甲车出发时间x(分)的函数图象.
(1)甲车从M地出发后,经过多长时间甲乙两车第一次相遇?
(2)乙车从M地出发后,经过多长时间甲乙两车与各自出发地的距离相等?
查看答案
如图,某新城休闲公园有一圆形人工湖,湖中心O处有一喷泉.小明为测量湖的半径,在湖边选择A、B两个观测点,在A处测得∠OAB=α,在AB延长线上的C处测得∠OCB=β,如果
,
,BC=50米.求人工湖的半径.
查看答案
如图,在4×3的正方形网格中,△ABC的顶点都在小正方形顶点上.请你在图①和图②中分别画出一个三角形,同时满足以下两个条件:
(1)以点B为一个顶点,另外两个顶点也在小正方形顶点上;
(2)与△ABC全等,且不与△ABC重合.
查看答案
已知x=2+
,y=2-
,计算代数式
的值.
查看答案