定义:在平面内,我们把既有大小又有方向的量叫做平面向量.平面向量可以用有向线段表示,有向线段的长度表示向量的大小,有向线段的方向表示向量的方向.其中大小相等,方向相同的向量叫做相等向量.
如以正方形ABCD的四个顶点中某一点为起点,另一个顶点为终点作向量,可以作出8个不同的向量:
、
、
、
、
、
、
、
(由于
和
是相等向量,因此只算一个).
(1)作两个相邻的正方形(如图一).以其中的一个顶点为起点,另一个顶点为终点作向量,可以作出不同向量的个数记为f(2),试求f(2)的值;
(2)作n个相邻的正方形(如图二)“一字型”排开.以其中的一个顶点为起点,另一个顶点为终点作向量,可以作出不同向量的个数记为f(n),试求f(n)的值;
(3)作2×3个相邻的正方形(如图三)排开.以其中的一个顶点为起点,另一个顶点为终点作向量,可以作出不同向量的个数记为f(2×3),试求f(2×3)的值;
(4)作m×n个相邻的正方形(如图四)排开.以其中的一个顶点为起点,另一个顶点为终点作向量,可以作出不同向量的个数记为f(m×n),试求f(m×n)的值.
考点分析:
相关试题推荐
如图1、2是两个相似比为1:
的等腰直角三角形,将两个三角形如图3放置,小直角三角形的斜边与大直角三角形的一直角边重合.
(1)在图3中,绕点D旋转小直角三角形,使两直角边分别与AC、BC交于点E,F,如图4.求证:AE
2+BF
2=EF
2;
(2)若在图3中,绕点C旋转小直角三角形,使它的斜边和CD延长线分别与AB交于点E、F,如图5,此时结论AE
2+BF
2=EF
2是否仍然成立?若成立,请给出证明;若不成立,请说明理由.
(3)如图6,在正方形ABCD中,E、F分别是边BC、CD上的点,满足△CEF的周长等于正方形ABCD的周长的一半,AE、AF分别与对角线BD交于M、N,试问线段BM、MN、DN能否构成三角形的三边长?若能,指出三角形的形状,并给出证明;若不能,请说明理由.
查看答案
青海玉树发生7.1级强震,为使人民的生命财产损失降到最低,部队官兵发扬了连续作战的作风.刚回营地的两个抢险分队又接到救灾命令:一分队立即出发前往距营地30千米的A镇,二分队因疲劳可在营地休息a(0≤a≤3)小时再往A镇参加救灾.一分队出发后得知,唯一通往A镇的道路在离营地10千米处发生塌方,塌方地形复杂,必须由一分队用1小时打通道路.已知一分队的行进速度为b千米/时,二分队的行进速度为(4+a)千米/时.
(1)若二分队在营地不休息,问要使二分队在最短时间内赶到A镇,一分队的行进速度至少为多少千米/时?
(2)若b=4千米/时,二分队和一分队同时赶到A镇,二分队应在营地休息几小时?
查看答案
已知⊙O过点D(3,4),点H与点D关于x轴对称,过H作⊙O的切线交x轴于点A.
(1)求sin∠HAO的值;
(2)如图,设⊙O与x轴正半轴交点为P,点E、F是线段OP上的动点(与点P不重合),连接并延长DE、DF交⊙O于点B、C,直线BC交x轴于点G,若△DEF是以EF为底的等腰三角形,试探索sin∠CGO的大小怎样变化,请说明理由.
查看答案
如图,在Rt△ABC中,斜边AB=5厘米,BC=a厘米,AC=b厘米,a>b,且a、b是方程x
2-(m-1)x+m+4=0的两根,
(1)求a和b的值;
(2)若△A′B′C′与△ABC开始时完全重合,然后让△ABC固定不动,将△A′B′C′沿BC所在的直线向左移动x厘米.
①设△A′B′C′与△ABC有重叠部分,其面积为y平方厘米,求y与x之间的函数关系式,并写出x的取值范围;
②若重叠部分的面积等于
平方厘米,求x的值.
查看答案
给你两张白纸一把剪刀.你的任务是:用剪刀剪出下面给定的两个图案,你可以将纸片任意折叠,但只能沿直线剪一刀,要得到下面两个图案,在不实际折叠的情况下,想象一下,该如何折叠?用虚线画出折痕,用实线画出剪的这一刀(分别在旁边的白纸上画出来)
.
查看答案