如图1,在Rt△ABC中,∠ACB=90°,∠A=30°,P为BC边上任意一点,点Q为AC边动点,分别以CP、PQ为边做等边△PCF和等边△PQE,连接EF.
(1)试探索EF与AB位置关系,并证明;
(2)如图2,当点P为BC延长线上任意一点时,(1)结论是否成立?请说明理由.
(3)如图3,在Rt△ABC中,∠ACB=90°,∠A=m°,P为BC延长线上一点,点Q为AC边动点,分别以CP、PQ为腰做等腰△PCF和等腰△PQE,使得PC=PF,PQ=PE,连接EF.要使(1)的结论依然成立,则需要添加怎样的条件?为什么?
考点分析:
相关试题推荐
李明从泉州乘汽车沿高速公路前往A地,已知该汽车的平均速度是100千米/小时,它行驶t小时后距泉州的路程为s
1千米.
(1)请用含t的代数式表示s
1;
(2)设另有王红同时从A地乘汽车沿同一条高速公路回泉州,已知这辆汽车距泉州的路程s
2(千米)与行驶时间t(时)之间的函数关系式为s
2=kt+b(k、t为常数,k≠0),若李红从A地回到泉州用了9小时,且当t=2时,s
2=560,k与b的值;
②试问在两辆汽车相遇之前,当行驶时间t的取值在什么范围内,两车的距离小于288千米?
查看答案
如图,AB是⊙O的直径,过⊙O上的点E作⊙O的切线,交AB延长线于点C,过A点作AD⊥CE于点D,且与⊙O交于点F,连接AE、BF.
(1)AE是否为∠CAD的平分线,说明理由;
(2)若CB=2,CE=4,求⊙O的半径及BF的长.
查看答案
服装商场按标价销售某种T恤衫时,每件可获利45元;如果按标价的九折销售每件仍可获利润25元.
(1)该种T恤衫的每件的进价、标价分别是多少元?
(2)若每件T恤衫按(1)中求出的进价进货,标价售出,商场每天可售出该种T恤衫100件,若每件降价1元,则每天可多售出4件,问每件T恤衫降价多少元出售?每天获得的利润最大?获得的最大利润是多少元?
查看答案
“村村通油路工程”加快了锦州市建设社会主义新农村的步伐,如图,C村村民欲修建一条水泥公路将C村与县级公路相连,在公路A处测得C村在北偏东60°方向,前进600米,在B处测得C村在北偏东45°方向.
(1)为节约资源,要求所修公路长度最短,试求符合条件的公路长度.(精确到米,参考数据:
=1.414,
=1.732,
=2,
=1)
(2)经预算,修建1000米这样的水泥公路约需人民币30万元,按国家的相关政策,政府对修建该条水泥公路拨款人民币10万元,其余部分由村民自发筹集,试求修建该条水泥公路村民需自筹资金多少万元.
查看答案
如图是一个被平均分成6等份的转盘,每一个扇形中都标有相应的数字,甲乙两人分别转动转盘,设甲转动转盘后指针所指区域内的数字为x,乙转动转盘后指针所指区域内的数字为y(当指针在边界上时,重转一次,直到指向一个区域为止).
(1)直接写出甲转动转盘后所指区域内的数字为负数的概率;
(2)用树状图或列表法,求出点(x,y)落在第二象限内的概率.
查看答案