满分5 >
初中数学试题 >
在Rt△ABC中,∠C=90°,AC=3,BC=4.若以1为半径的圆在△ABC所...
在Rt△ABC中,∠C=90°,AC=3,BC=4.若以1为半径的圆在△ABC所在平面上运动,则这个圆与△ABC的三条边的公共点最多有( )
A.2个
B.3个
C.4个
D.5个
考点分析:
相关试题推荐
已知函数y=
x+1的图象为直线l,点P(2,1),则点P到直线l的距离为( )
A.2
B.1
C.
D.
查看答案
如图所示的图象所表示的函数的关系式为( )
A.y=
|x-1|(0≤x≤2)
B.y=
-
|x-1|(0≤x≤2)
C.y=
-|x-1|(0≤x≤2)
D.y=1-|x-1|(0≤x≤2)
查看答案
如图,已知抛物线经过原点O和x轴上另一点A,它的对称轴x=-2与x轴交于点C,直线y=-2x+1经过抛物线上一点B(2,m),且与y轴.直线x=-2分别交于点D、E.
(1)求m的值及该抛物线对应的函数关系式;
(2)①判断△CBE的形状,并说明理由;②判断CD与BE的位置关系;
(3)若P(x,y)是该抛物线上的一个动点,是否存在这样的点P,使得PB=PE?若存在,试求出所有符合条件的点P的坐标;若不存在,请说明理由.
查看答案
如图1,在Rt△ABC中,∠ACB=90°,∠A=30°,P为BC边上任意一点,点Q为AC边动点,分别以CP、PQ为边做等边△PCF和等边△PQE,连接EF.
(1)试探索EF与AB位置关系,并证明;
(2)如图2,当点P为BC延长线上任意一点时,(1)结论是否成立?请说明理由.
(3)如图3,在Rt△ABC中,∠ACB=90°,∠A=m°,P为BC延长线上一点,点Q为AC边动点,分别以CP、PQ为腰做等腰△PCF和等腰△PQE,使得PC=PF,PQ=PE,连接EF.要使(1)的结论依然成立,则需要添加怎样的条件?为什么?
查看答案
李明从泉州乘汽车沿高速公路前往A地,已知该汽车的平均速度是100千米/小时,它行驶t小时后距泉州的路程为s
1千米.
(1)请用含t的代数式表示s
1;
(2)设另有王红同时从A地乘汽车沿同一条高速公路回泉州,已知这辆汽车距泉州的路程s
2(千米)与行驶时间t(时)之间的函数关系式为s
2=kt+b(k、t为常数,k≠0),若李红从A地回到泉州用了9小时,且当t=2时,s
2=560,k与b的值;
②试问在两辆汽车相遇之前,当行驶时间t的取值在什么范围内,两车的距离小于288千米?
查看答案