满分5 > 初中数学试题 >

已知抛物线y=x2-x-2. (1)求抛物线顶点M的坐标; (2)若抛物线与x轴...

已知抛物线y=x2-x-2.
(1)求抛物线顶点M的坐标;
(2)若抛物线与x轴的交点分别为点A、B(点A在点B的左边),与y轴交于点C,点N为线段BM上的一点,过点N作x轴的垂线,垂足为点Q.当点N在线段BM上运动时(点N不与点B,点M重合),设NQ的长为t,四边形NQAC的面积为S,求S与t之间的函数关系式及自变量t的取值范围;
(3)在对称轴右侧的抛物线上是否存在点P,使△PAC为直角三角形?若存在,求出所有符合条件的点P的坐标;若不存在,请说明理由.
(1)将已知的抛物线解析式化为顶点坐标式,即可求出抛物线顶点M的坐标. (2)根据抛物线的解析式可求出A、B、C三点的坐标,进而可求出直线BM的解析式,已知了QN=t,即N点纵坐标为-t,代入直线BM的解析式中,可求得Q点的横坐标即OQ得长,分别求出△OAC、梯形QNCO的面积,它们的面积和即为所求的四边形QNCO的面积,由此可求出S、t的函数关系式. (3)根据函数的图象及A、C的位置,可明显的看出∠APC不可能是直角,因此此题要分两种情况讨论: ①∠PAC=90°,设出点P的坐标,然后表示出AC2、PA2、PC2的值,根据勾股定理可得到关于P点横、纵坐标的等量关系式,联立抛物线的解析式,即可求出此时点P的坐标; ②∠PCA=90°,解法同①. 【解析】 (1)∵抛物线y=x2-x-2=(x-)2-, ∴顶点M的坐标为.(1分) (2)抛物线与y=x2-x-2与x轴的两交点为A(-1,0),B(2,0), 设线段BM所在直线的解析式为y=kx+b, ∴, 解得; ∴线段BM所在直线的解析式为,(2分) 设点N的坐标为(x,-t). ∵点N在线段BM上, ∴. ∴. ∴S四边形NQAC=S△AOC+S梯形OQNC =.(3分) ∴S与t之间的函数关系式为,自变量t的取值范围为.(4分) (3)假设存在符合条件的点P,设点P的坐标为P(m,n),则且n=m2-m-2; PA2=(m+1)2+n2,PC2=m2+(n+2)2,AC2=5, 分以下几种情况讨论: ①若∠PAC=90°,则PC2=PA2+AC2. ∴, 解得,m2=-1; ∵, ∴, ∴;(6分) ②若∠PCA=90°,则PA2=PC2+AC2 ∴, 解得,m4=0, ∵, ∴, ∴; 当点P在对称轴右侧时,PA>AC, 所以边AC的对角∠APC不可能是直角, ∴存在符合条件的点P,且坐标为,.(8分)
复制答案
考点分析:
相关试题推荐
已知:m、n是方程x2-6x+5=0的两个实数根,且m<n,抛物线y=-x2+bx+c的图象经过点manfen5.com 满分网A(m,0)、B(0,n).
(1)求这个抛物线的解析式;
(2)设(1)中抛物线与x轴的另一交点为C,抛物线的顶点为D,试求出点C、D的坐标和△BCD的面积;
(3)P是线段OC上的一点,过点P作PH⊥x轴,与抛物线交于H点,若直线BC把△PCH分成面积之比为2:3的两部分,请求出P点的坐标.
查看答案
如图,AB切⊙O于点B,OA交⊙O于C点,过C作DC⊥OA交AB于D,且BD:AD=1:2.
(1)求∠A的正切值;
(2)若OC=1,求AB及manfen5.com 满分网的长.

manfen5.com 满分网 查看答案
如图,⊙O1和⊙O内切于点A,AB为⊙O的直径,点O1在OA上,⊙O的弦BC切⊙O1于点D,两圆的半径R=4,r=3.
(1)求BD的长;
(2)求CD的长.

manfen5.com 满分网 查看答案
将正面分别标有数字6,7,8,背面花色相同的三张卡片洗匀后,背面朝上放在桌面上.
(1)随机地抽取一张,求P(偶数);
(2)随机地抽取一张作为个位上的数字(不放回),再抽取一张作为十位上的数字,能组成哪些两位数恰好为“68”的概率是多少?
查看答案
如图,是从一副扑克牌中取出的两组牌,分别是红桃1,2,3和方块1,2,3,将它们的背面朝上分别重新洗牌后,再从两组牌中各摸出一张.
(1)用列举法列举所有可能出现的结果;
(2)求摸出的两张牌的牌面数字之和不小于5的概率.

manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.