满分5 > 初中数学试题 >

抛物线y=ax2+bx+c(a<0)交x轴于点A(-1,0)、B(3,0),交y...

抛物线y=ax2+bx+c(a<0)交x轴于点A(-1,0)、B(3,0),交y轴于点C,顶点为D,以BD为直径的⊙M恰好过点C.
(1)求顶点D的坐标(用a的代数式表示);
(2)求抛物线的解析式;
(3)抛物线上是否存在点P使△PBD为直角三角形?若存在,求出点P的坐标;若不存在,说明理由.

manfen5.com 满分网
(1)点A(-1,0)和B(3,0)一定关于抛物线的对称轴对称,因而函数的对称轴是x=1,把x=1代入抛物线的解析式就可以求出D的坐标; (2)过点D作DE⊥y轴于点E,易证△DEC∽△COB,根据相似三角形的对应边的比相等就可以求出a的值.从而求出抛物线的解析式; (3)本题应分∠BPD=90°,∠DBP=90°,∠BDP=90°三种情况进行讨论.第一种情况P就是满足条件的点. 第二种情况中,过点P2作P2R⊥x轴于点R,由△BP2R∽△DBH就可以求出. 第三种情况,设DP3的延长线交y轴于点N,可证△EDN∽△HDB,求出直线DN的解析式,就可以求抛物线与直线DN的交点. 【解析】 (1)(方法一)由题意:设抛物线的解析式为y=a(x+1)(x-3) ∴y=ax2-2ax-3a=a(x-1)2-4a, ∴点C(0,-3a),D(1,-4a), (方法二)由题意:, 解得. ∴y=ax2-2ax-3a(下同方法一); (2)(方法一)过点D作DE⊥y轴于点E,易证△DEC∽△COB ∴∴ ∴a2=1. ∵a<0, ∴a=-1. 故抛物线的解析式为:y=-x2+2x+3. (方法二)过点D作DE⊥y轴于点E,过M作MG⊥x轴于点G, 设⊙M交x轴于另一点H,交y轴于另一点F,可先证四边形OHDE为矩形,则OH=DE=1,再证OF=CE=-a, 由OH•OB=OF•OC得:(-a)(-3a)=1×3, ∴a2=1;(下同法一) (3)符合条件的点P存在,共3个 ①若∠BPD=90°,P点与C点重合,则P1(0,3)(P1表示第一个P点,下同) ②若∠DBP=90°,过点P2作P2R⊥x轴于点R, 设点P2(p,-p2+2p+3) 由△BP2R∽△DBH得,, 即, 解得或p=3(舍去) 故 ③若∠BDP=90°,设DP3的延长线交y轴于点N,可证△EDN∽△HDB, 求得EN=, ∴N(0,). 求得DN的解析式为, 求抛物线与直线DN的交点得P3(), 综上所述:符合条件的点P为(0,3)、、().
复制答案
考点分析:
相关试题推荐
已知:如图,△ABC中,∠C=90°,AC=3厘米,CB=4厘米.两个动点P、Q分别从A、C两点同时按顺时针方向沿△ABC的边运动.当点Q运动到点A时,P、Q两点运动即停止.点P、Q的运动速度分别为1厘米/秒、2厘米/秒,设点P运动时间为t(秒).
(1)当时间t为何值时,以P、C、Q三点为顶点的三角形的面积(图中的阴影部分)等于2厘米2
(2)当点P、Q运动时,阴影部分的形状随之变化.设PQ与△ABC围成阴影部分面积为S(厘米2),求出S与时间t的函数关系式,并指出自变量t的取值范围;
(3)点P、Q在运动的过程中,阴影部分面积S有最大值吗?若有,请求出最大值;若没有,请说明理由.

manfen5.com 满分网 查看答案
已知抛物线y=x2-x-2.
(1)求抛物线顶点M的坐标;
(2)若抛物线与x轴的交点分别为点A、B(点A在点B的左边),与y轴交于点C,点N为线段BM上的一点,过点N作x轴的垂线,垂足为点Q.当点N在线段BM上运动时(点N不与点B,点M重合),设NQ的长为t,四边形NQAC的面积为S,求S与t之间的函数关系式及自变量t的取值范围;
(3)在对称轴右侧的抛物线上是否存在点P,使△PAC为直角三角形?若存在,求出所有符合条件的点P的坐标;若不存在,请说明理由.
查看答案
已知:m、n是方程x2-6x+5=0的两个实数根,且m<n,抛物线y=-x2+bx+c的图象经过点manfen5.com 满分网A(m,0)、B(0,n).
(1)求这个抛物线的解析式;
(2)设(1)中抛物线与x轴的另一交点为C,抛物线的顶点为D,试求出点C、D的坐标和△BCD的面积;
(3)P是线段OC上的一点,过点P作PH⊥x轴,与抛物线交于H点,若直线BC把△PCH分成面积之比为2:3的两部分,请求出P点的坐标.
查看答案
如图,AB切⊙O于点B,OA交⊙O于C点,过C作DC⊥OA交AB于D,且BD:AD=1:2.
(1)求∠A的正切值;
(2)若OC=1,求AB及manfen5.com 满分网的长.

manfen5.com 满分网 查看答案
如图,⊙O1和⊙O内切于点A,AB为⊙O的直径,点O1在OA上,⊙O的弦BC切⊙O1于点D,两圆的半径R=4,r=3.
(1)求BD的长;
(2)求CD的长.

manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.