满分5 > 初中数学试题 >

某商店需要购进一批电视机和洗衣机,根据市场调查,决定电视机进货量不少于洗衣机的进...

某商店需要购进一批电视机和洗衣机,根据市场调查,决定电视机进货量不少于洗衣机的进货量的一半.电视机与洗衣机的进价和售价如表:
类 别电视机洗衣机
进价(元/台)18001500
售价(元/台)20001600
计划购进电视机和洗衣机共100台,商店最多可筹集资金161 800元.
(1)请你帮助商店算一算有多少种进货方案?(不考虑除进价之外的其它费用)
(2)哪种进货方案待商店销售购进的电视机与洗衣机完毕后获得利润最多?并求出最多利润.(利润=售价-进价)
(1)关键描述语:电视机进货量不少于洗衣机的进货量的一半,由此可用不等式将电视机和洗衣机的进货量表示出来,在根据商店最多可筹到的资金数可列不等式,求解不等式组即可; (2)根据利润=售价-进价,列出关系式进行讨论可知哪种方案获利最多. 【解析】 (1)设商店购进电视机x台,则购进洗衣机(100-x)台, 根据题意得 解不等式组得≤x≤ ∵x取整数 ∴x可以取34,35,36,37,38,39, 即购进电视机最少34台,最多39台,商店有6种进货方案; (2)设商店销售完毕后获利为y元,根据题意得 y=(2000-1800)x+(1600-1500)(100-x)=100x+10000. ∵100>0,∴y随x增大而增大, ∴当x=39时,商店获利最多为13900元.
复制答案
考点分析:
相关试题推荐
已知点A(m-1,3)与点B(2,n+1)关于x轴对称,则m=______,n=______
如图,在平面直角坐标系中,有若干个整数点,其顺序按图中“→”方向排列,如(1,0),(2,0),(2,1),(3,2),(3,1),(3,0)…根据这个规律探索可得,第100个点的坐标为______

manfen5.com 满分网 查看答案
如图,在直角坐标系中,已知点P的坐标为(1,0),将线段OP按逆时针方向旋转45°,将其长度伸长为OP的2倍,得到线段OP1;再将线段OP1按逆时针方向旋转45°,长度伸长为OP1的2倍,得到线段OP2;如此下去,得到线段OP3,OP4,…,OPn(n为正整数)
(1)求点P6的坐标;
(2)求△P5OP6的面积;
(3)我们规定:把点Pn(xn,yn)(n=0,1,2,3,…)的横坐标xn、纵坐标yn都取绝对值后得到的新坐标(|xn|,|yn|)称之为点Pn的“绝对坐标”.根据图中点Pn的分布规律,请你猜想点Pn的“绝对坐标”,并写出来.

manfen5.com 满分网 查看答案
一座建于若干年前的水库大坝的横断面如图所示,其中背水面的整个坡面是长为90米、宽为5米的矩形.现需将其整修并进行美化,方案如下:①将背水坡AB的坡度由1:0.75改为1:manfen5.com 满分网;②用一组与背水坡面长边垂直的平行线将背水坡面分成9块相同的矩形区域,依次相间地种草与栽花.
(1)求整修后背水坡面的面积;
(2)如果栽花的成本是每平方米25元,种草的成本是每平方米20元,那么种植花草至少需要多少元?

manfen5.com 满分网 查看答案
抛物线y=ax2+bx+c(a<0)交x轴于点A(-1,0)、B(3,0),交y轴于点C,顶点为D,以BD为直径的⊙M恰好过点C.
(1)求顶点D的坐标(用a的代数式表示);
(2)求抛物线的解析式;
(3)抛物线上是否存在点P使△PBD为直角三角形?若存在,求出点P的坐标;若不存在,说明理由.

manfen5.com 满分网 查看答案
已知:如图,△ABC中,∠C=90°,AC=3厘米,CB=4厘米.两个动点P、Q分别从A、C两点同时按顺时针方向沿△ABC的边运动.当点Q运动到点A时,P、Q两点运动即停止.点P、Q的运动速度分别为1厘米/秒、2厘米/秒,设点P运动时间为t(秒).
(1)当时间t为何值时,以P、C、Q三点为顶点的三角形的面积(图中的阴影部分)等于2厘米2
(2)当点P、Q运动时,阴影部分的形状随之变化.设PQ与△ABC围成阴影部分面积为S(厘米2),求出S与时间t的函数关系式,并指出自变量t的取值范围;
(3)点P、Q在运动的过程中,阴影部分面积S有最大值吗?若有,请求出最大值;若没有,请说明理由.

manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.