满分5 > 初中数学试题 >

已知:如图,二次函数y=x2+(2k-1)x+k+1的图象与x轴相交于O、A两点...

已知:如图,二次函数y=x2+(2k-1)x+k+1的图象与x轴相交于O、A两点.
(1)求这个二次函数的解析式;
(2)在这条抛物线的对称轴右边的图象上有一点B,使锐角△AOB的面积等于3.求点B的坐标;
(3)对于(2)中的点B,在抛物线上是否存在点P,使∠POB=90°?若存在,求出点P的坐标,并求出△POB的面积;若不存在,请说明理由.

manfen5.com 满分网
(1)将原点坐标代入抛物线中即可求出k的值,也就得出了抛物线的解析式. (2)根据(1)得出的抛物线的解析式可得出A点的坐标,也就求出了OA的长,根据三角形OAB的面积可求出B点纵坐标的绝对值,由于三角形AOB是锐角三角形那么B点必在x轴下方,根据这个条件可将不合题意的B点纵坐标舍去,然后将符合题意的B点纵坐标代入抛物线的解析式中即可求出B点的坐标,然后根据B点在抛物线对称轴的右边来判断得出的B点是否符合要求即可. (3)根据B点坐标可求出直线OB的解析式,由于OB⊥OP,因此两直线的斜率的积为-1,由此可求出直线OP的解析式,联立直线OP和抛物线的解析式,可得出P点的坐标. 求三角形POB的面积时,如果设直线BP与x轴的角度为Q的话,三角形POB的面积可分成三角形OBQ和三角形OPQ两部分来求.可先求出直线BP的解析式即可的直线BP与x轴交点坐标,然后按上面分析的三角形BOP的面积计算方法进行求解即可. 【解析】 (1)∵y=x2+(2k-1)x+k+1过(0,0), ∴k+1=0,k=-1, y=x2-3x. (2)设B(x,y), ∵y=x2-3x的对称轴为直线x= ∴x>,y<0, 易知:A(3,0),即OA=3, 又∵×OA•|y|=3 ∴y=±2 当y=-2时,-2=x2-3x, 解得,x=2,x=1(舍去); ∴B(2,-2); (3)当B(2,-2)时,直线OB的解析式为y=-x, ∵B0⊥PO, ∴直线0P的解析式为y=x, ∵两函数相交 ∴P1(0,0)舍去,P2(4,4); 由勾股定理算出OB=2,OP=4, S△OPB=×2×4=8.
复制答案
考点分析:
相关试题推荐
如图,已知抛物线y=ax2+bx-3与x轴交于A、B两点,与y轴交于C点,经过A、B、C三点的圆的圆心M(1,m)恰好在此抛物线的对称轴上,⊙M的半径为manfen5.com 满分网.设⊙M与y轴交于D,抛物线的顶点为E.
(1)求m的值及抛物线的解析式;
(2)设∠DBC=α,∠CBE=β,求sin(α-β)的值;
(3)探究坐标轴上是否存在点P,使得以P、A、C为顶点的三角形与△BCE相似?若存在,请指出点P的位置,并直接写出点P的坐标;若不存在,请说明理由.

manfen5.com 满分网 查看答案
已知二次函数y=mx2+(m-3)x-3  (m>0)
(1)求证:它的图象与x轴必有两个不同的交点;
(2)这条抛物线与x轴交于A(x1,0)和B(x2,0)(x1<x2),与y轴交于点C,且AB=4,⊙M过A、B、C三点,求扇形MAC的面积S;
(3)在(2)的条件下,抛物线上是否存在点P使△PBD(PD垂直于x轴,垂足为D)被直线BC分成面积比为1:2的两部分?若存在,请求出点P的坐标;若不存在,请说明理由.

manfen5.com 满分网 查看答案
如图,在直角坐标系中,以点P(1,-1)为圆心,2为半径作圆,交x轴于A、B两点,抛物线y=ax2+bx+c(a>0)过点A、B,且顶点C在⊙P上.
(1)求⊙P上劣弧AB的长;
(2)求抛物线的解析式;
(3)在抛物线上是否存在一点D,使线段OC与PD互相平分?若存在,求出点D的坐标;若不存在,请说明理由.

manfen5.com 满分网 查看答案
已知:如图,抛物线y=ax2+bx+c的顶点C在以D(-2,-2)为圆心,4为半径的圆上,且经过⊙D与x轴的两个交点A、B,连接AC、BC、OC.
(1)求点C的坐标;
(2)求图中阴影部分的面积;
(3)在抛物线上是否存在点P,使DP所在直线平分线段OC?若存在,求出点P的坐标;若不存在,请说明理由.

manfen5.com 满分网 查看答案
在平面直角坐标系xOy中,已知二次函数y=ax2+bx+c(a≠0)的图象与x轴交于A,B两点(点A在点B的左边),与y轴交于点C,其顶点的横坐标为1,且过点(2,3)和(-3,-12).
(1)求此二次函数的表达式;
(2)若直线l:y=kx(k≠0)与线段BC交于点D(不与点B,C重合),则是否存在这样的直线l,使得以B,O,D为顶点的三角形与△BAC相似?若存在,求出该直线的函数表达式及点D的坐标;若不存在,请说明理由;
(3)若点P是位于该二次函数对称轴右边图象上不与顶点重合的任意一点,试比较锐角∠PCO与∠ACO的大小(不必证明),并写出此时点P的横坐标xp的取值范围.

manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.