满分5 > 初中数学试题 >

如图,已知半圆O的直径DE=12cm,在△ABC中,∠ACB=90°,∠ABC=...

如图,已知半圆O的直径DE=12cm,在△ABC中,∠ACB=90°,∠ABC=30°,BC=12cm,半圆O以2cm/s的速度从左向右运动,在运动过程中,点D、E始终在直线BC上.设运动时间为t(s),当t=0s时,半圆O在△ABC的左侧,OC=8cm.
(1)当t为何值时,△ABC的一边所在直线与半圆O所在的圆相切?
(2)当△ABC的一边所在直线与半圆O所在的圆相切时,如果半圆O与直线DE围成的区域manfen5.com 满分网与△ABC三边围成的区域有重叠部分,求重叠部分的面积.
(1)随着半圆的运动分四种情况:①当点E与点C重合时,AC与半圆相切,②当点O运动到点C时,AB与半圆相切,③当点O运动到BC的中点时,AC再次与半圆相切,④当点O运动到B点的右侧时,AB的延长线与半圆所在的圆相切.分别求得半圆的圆心移动的距离后,再求得运动的时间. (2)在1中的②,③中半圆与三角形有重合部分.在②图中重叠部分是圆心角为90°,半径为6cm的扇形,故可根据扇形的面积公式求解.在③图中,所求重叠部分面积为=S△POB+S扇形DOP. 【解析】 (1)①如图,当点E与点C重合时,AC⊥OE,OC=OE=6cm,所以AC与半圆O所在的圆相切,此时点O运动了2cm,所求运动时间为:t==1(s) ②如图,当点O运动到点C时,过点O作OF⊥AB,垂足为F. 在Rt△FOB中,∠FBO=30°,OB=12cm,则OF=6cm,即OF等于半圆O的半径,所以AB与半圆O所在的圆相切.此时点O运动了8cm,所求运动时间为:t==4(s) ③如图,当点O运动到BC的中点时,AC⊥OD,OC=OD=6cm,所以AC与半圆O所在的圆相切.此时点O运动了14cm,所求运动时间为:t==7(s). ④如图,当点O运动到B点的右侧,且OB=12cm时,过点O作OQ⊥AB,垂足为Q.在Rt△QOB中,∠OBQ=30°,则OQ=6cm,即OQ等于半圆O所在的圆的半径, 所以直线AB与半圆O所在的圆相切.此时点O运动了32cm,所求运动时间为:t==16(s). (2)当△ABC的一边所在的直线与半圆O所在的圆相切时,半圆O与直径DE围成的区域与△ABC三边围成的区域有重叠部分的只有如图②与③所示的两种情形. ①如图②,设OA与半圆O的交点为M,易知重叠部分是圆心角为90°,半径为6cm的扇形,所求重叠部分面积为:S扇形EOM=π×62=9π(cm2) ②如图③,设AB与半圆O的交点为P,连接OP,过点O作OH⊥AB,垂足为H. 则PH=BH.在Rt△OBH中,∠OBH=30°,OB=6cm 则OH=3cm,BH=3cm,BP=6cm,S△POB=×6×3=9(cm2) 又因为∠DOP=2∠DBP=60° 所以S扇形DOP==6π(cm2) 所求重叠部分面积为:S△POB+S扇形DOP=9+6π(cm2)
复制答案
考点分析:
相关试题推荐
(1)操作发现
如图,矩形ABCD中,E是AD的中点,将△ABE沿BE折叠后得到△GBE,且点G在矩形ABCD内部.延长BG交DC于点F,证明GF=DF;根据上述证明过程中所添加的辅助线,找出两两相似的三个三角形(全等除外),并给出证明过程;
(2)问题解决
保持(1)中的条件不变,若DC=2DF,求manfen5.com 满分网的值;
(3)类比探究
保持(1)中的条件不变,若DC=nDF,猜想manfen5.com 满分网的值,直接写出结论.

manfen5.com 满分网 查看答案
机器人“海宝”在某圆形区域按下列程序设计表演.其中,B、C在圆O上.
(1)请按程序补全下面图形;
(2)求BC的距离;
(3)求圆O的半径长.
(本题参考数据:sin67.4°=manfen5.com 满分网,cos67.4°=manfen5.com 满分网,tan67.4°=manfen5.com 满分网

manfen5.com 满分网 查看答案
如图,四边形OABC是面积为4的正方形,函数manfen5.com 满分网(x>0)的图象经过点B.
(1)求函数的解析式;
(2)将正方形OABC分别沿直线AB、BC翻折,得到正方形MABC′、NA′BC.设线段MC′、NA′分别与函数manfen5.com 满分网的图象交于点E、F,请判断线段EC′与FA′的大小关系,并说明理由;
(3)将函数manfen5.com 满分网的图象沿y轴向上平移使其过点C′,得到图象l1,直接说出图象l1是否过点A′?

manfen5.com 满分网 查看答案
如图,已知△ABC,延长AC.
(1)完成作图:用直尺和圆规作BC的垂直平分线交BC于G,作∠BAC的角平分线AD交BC的垂直平分线于D(保留作图痕迹,不写作法);
(2)若在前面作图的基础上再作DE⊥AB于E,DF⊥AC于F,证明:BE=CF.

manfen5.com 满分网 查看答案
已知一箱纸中装8个白球,12个红球,它们除颜色外其它都相同.
(1)求从箱中随机取出一个白球的概率是多少?
(2)现从箱中取走若干个白球,并放入相同数量的红球.搅拌均匀后,要使从箱中摸出一个球是红球的概率是manfen5.com 满分网,问取走了多少个白球?
(3)若往原纸箱中,再放入x个白球和y个红球,从箱中随机取出一个白球的概率是manfen5.com 满分网,求y与x的函数关系式.
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.