认真阅读下列问题,并加以解决:
问题1:如图1,△ABC是直角三角形,∠C=90°.现将△ABC补成一个矩形.要求:使△ABC的两个顶点成为矩形一边的两个端点,第三个顶点落在矩形这一边的对边上.请将符合条件的所有矩形在图1中画出来;
问题2:如图2,△ABC是锐角三角形,且满足BC>AC>AB,按问题1中的要求把它补成矩形.请问符合 要求的矩形最多可以画出______个,并猜想它们面积之间的数量关系是______(填写“相等”或“不相等”);
问题3:如果△ABC是钝角三角形,且三边仍然满足BC>AC>AB,现将它补成矩形.要求:△ABC有两个顶点成为矩形的两个顶点,第三个顶点落在矩形的一边上,那么符合要求的矩形有______个.
考点分析:
相关试题推荐
如图所示,每个小方格都是边长为1的正方形,以O点为坐标原点建立平面直角坐标系.
(1)画出四边形OABC关于y轴对称的四边形OA
1B
1C
1,并写出点B
1的坐标是______;
(2)画出四边形OABC绕点O顺时针方向旋转90°后得到的四边形OA
2B
2C
2,并求出点C旋转到点C
2经过的路径的长度.
查看答案
如图,菱形ABCD的对角线AC与BD相交于点O,点E,F分别为边AB,AD的中点,连接EF,OE,OF,求证:四边形AEOF是菱形.
查看答案
两个大小不同的等腰直角三角形三角板如图①所示放置,图②是由它抽象出的几何图形,B,C,E在同一条直线上,连接CD.请找出图②中的全等三角形,并说明理由(说明:结论中不得含有未标识的字母).
查看答案
甲、乙两商场同时开业,为了吸引顾客,都举办有奖酬宾活动,凡购物满100元,均可得到一次摸奖的机会.在一个纸盒里装有2个红球和2个白球,除颜色外,其他全部相同,摸奖者一次从中摸出两个球,请你用列表法(或画树状图)分别求出摸到两红、一红一白、两白的概率.
查看答案
为纪念古田会议80周年,我市某中学团委拟组织学生开展唱红歌比赛活动,为此,该校随机抽取部分学生就“你是否喜欢红歌”进行问卷调查,并将调查结果统计后绘制成如下统计表和扇形统计图.
态度 | 非常喜欢 | 喜欢 | 一般 | 不知道 |
频数 | 90 | b | 30 | 10 |
频率 | a | 0.35 | 0.20 |
请你根据统计图、表提供的信息解答下列问题:
(1)该校这次随机抽取了______名学生参加问卷调查;
(2)确定统计表中a、b的值:a=______,b=______;
(3)在统计图中“喜欢”部分扇形所对应的圆心角是______度;
(4)若该校共有2000名学生,估计全校态度为“非常喜欢”的学生有______人.
查看答案